Skip to main content
Log in

Alternating Magnetic Field Induced Membrane Permeability in Erythromycin Magneto-Liposomes A Potential Solution to Antibiotic Resistance

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Antibiotic resistance is a serious problem facing the world; it is increasing every year due to over or misuse of antibiotics that led to developing new mechanisms of drug resistance by bacteria. In the present study Magneto-Liposomes (MLs) loaded with Erythromycin drug were designed; They were subjected to 5 and 15 mT Alternating Magnetic Field (AMF) at 100 KHz for 30 min of exposure to test the effect of exposure to the AMF on inducing the drug release rate beyond the resistance mechanism of bacteria. During exposure, the temperature of the sample was continuously recorded using IR thermometer. After exposure, the percentage of drug released was tested using UPLC-MS/MS method for every hour until 8 h then at 24 h post-exposure. Results showed an elevated temperature of 4 and 24°C in case of exposure the Erythromycin-encapsulated MLs to 5 and 15 mT respectively. Moreover, an increase in the percentage of Erythromycin release with a percentage of (0.83 ± 0.1) μg/mL and with (1.33 ± 4) × 10–7 μg/mL for exposure to 5 and 15 mT respectively, with respect to (0.24 ± 0.06) μg/mL in the control group. Exposing Erythromycin-encapsulated ML to AMF accelerated the release rate due to mechanical actuation of the nanoparticles. These findings suggest that it is possible to trigger and control the drug release by merging the targeted drug delivery system with the nanotechnology and magnetic field. Upon increasing the intensity of the AMF, the release rate increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Hardiansyah, L.-Y. Huang, M.-Ch. Yang, et al., Nanoscale Rese. Lett. 9, 497 (2014).

    Article  ADS  Google Scholar 

  2. P. R. Kulkarni, J. D. Yadav, and K. A. Vaidya, Int. J. Curr. Pharm. Res. 3, 10 (2011).

    Google Scholar 

  3. R. P. Liburdy and T. S. Tenforde, Radiat. Res. 108, 102 (1986)

    Article  ADS  Google Scholar 

  4. Y. Wang and D. S. Kohane, Nature Rev. Materials 2, 17020 (2017). https://doi.org/10.1038/natrevmats.2017.20

    Article  ADS  Google Scholar 

  5. A. Akbarzadeh, M. Samiei, and S. Davaran, Nanoscale Res. Lett. 7, 144 (2012).

    Article  ADS  Google Scholar 

  6. S. Laurent, D. Forge, M. Port, et al., Chem. Rev. 110 (4), 2574 (2010). https://doi.org/10.1021/cr900197g

    Article  Google Scholar 

  7. Ch. Tapeinos, in Smart Nanoparticles for Biomedicine (Elsevier, 2018), pp. 131–142. https://doi.org/10.1016/B978-0-12-814156-4.00009-4

    Book  Google Scholar 

  8. S. L. Pal, U. Jana, P. K. Manna, et al., J. Appl. Pharmaceut. Sci. 1 (6), 228 (2011).

    Google Scholar 

  9. T. Neuberger, B. Schopf, H. Hofmann, et al., J. Magnetism Magnet. Mater. 293, 483 (2005).

    Article  ADS  Google Scholar 

  10. J. Estelrich, E. Escribano, J. Queralt, and M. A. Bus-quets, Int. J. Mol. Sci. 16 (4), 8070 (2015). https://doi.org/10.3390/ijms16048070

    Article  Google Scholar 

  11. L. A. Tai, P. J. Tsai, Y. C. Wang, et al., Nanotechnology 20 (13) (2009). https://doi.org/10.1088/0957-4484/20/13/135101

  12. D. Qiu, and X. An, Colloids Surfaces B: Biointerfaces 104, 326 (2013). https://doi.org/10.1016/j.colsurfb.2012.11.033

    Article  Google Scholar 

  13. R. I. Blumenthal, J. Nanomed. Biother. Discov. 4 (3), 1000130 (2014). https://doi.org/10.4172/2155-983x.1000130

    Article  Google Scholar 

  14. S. Nappini, M. Bonini, F. Ridi, and P. Baglioni, Soft Matter 7 (10), 4801 (2011). https://doi.org/10.1039/c0sm01264e

    Article  ADS  Google Scholar 

  15. A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, et al., J. Colloid Sci. Biotechnol. 1 (2), 147 (2012). https://doi.org/10.1166/jcsb.2012.1020

    Article  Google Scholar 

  16. S. Nappini, S. Fogli, B. Castroflorio, et al., J. Mater. Chem. B 4, 716 (2016).

    Article  Google Scholar 

  17. Y. I. Golovin, S. L. Gribanovsky, D. Y. Golovin, et al., J. Control. Release 219, 43 (2015).

    Article  Google Scholar 

  18. W. Zhan and C. H. Wang, J. Control. Release 285, 212 (2018). https://doi.org/10.1016/j.jconrel.2018.07.006

    Article  Google Scholar 

  19. T. Hirsch, F. Jacobsen, H.-U. Steinau, and L. Steinstraesser, Prot. Peptide Lett. 15 (3), 238 (2008).

    Article  Google Scholar 

  20. L. S. Tavares, M. D. O. Santos, L. F. Viccini, et al., Peptides 29 (10), 1842 (2008).

    Article  Google Scholar 

  21. S. B. Zaman, M. A. Hussain, R. Nye, et al., Cureus 9 (6), e1403 (2017).

    Google Scholar 

  22. U. Shimanovich and A. Gedanken, J. Mater. Chem. B 4 (5), 824 (2016).

    Article  Google Scholar 

  23. A. Gupta, S. Mumtaz, C.-H. Li, et al., Chem. Soc. Rev. 48 (2), 415 (2019).

    Article  Google Scholar 

  24. D. Belc, C. Chen, R. Roberts, et al., in NSTI Nanotech 2005: Proc. NSTI Nanotechnology Conf. and Trade Show (2005), pp. 23–26.

  25. R. Spera, F. Apollonio, M. Liberti, et al., Colloids Surf. B Biointerfaces 131, 136 (2015).

    Article  Google Scholar 

  26. M. Babincova, P. Čičmanec, V. Altanerova, Bioelectrochemistry 55 (1–2), 17 (2002). https://doi.org/10.1016/S1567-5394(01)00171-2

  27. A. Joniec, S. Sek, and P. Krysinski, Chemistry – Eur. J. 22 (49), 17715 (2016). https://doi.org/10.1002/chem.201602809

    Article  Google Scholar 

  28. V. M. De Paoli, S. H. Lacerda De Paoli, L. Spinu, et al., Langmuir 22, 5894 (2006).

    Article  Google Scholar 

  29. N. C. C. Lobato, A. de Mello Ferreira, and M. B. Man-sur, Separat. Purif. Technol. 168, 93 (2016).

    Article  Google Scholar 

  30. E. Touitou, L. Bergelson, B. Godin, and M. Eliaz, J. Control Release 65, 403 (2000).

    Article  Google Scholar 

  31. M. Rady, I. Gomaa, N. Afifi, and M. Abdel-Kader, Int. J. Pharmaceut. 548 (1), 480 (2018).

    Article  Google Scholar 

  32. G. Podaru, R. Dani, H. Wang, et al., J. Phys. Chem. B 118 (40), 11715 (2014). https://doi.org/10.1021/jp5022278

    Article  Google Scholar 

  33. C. A. Monnier, D. Burnand, B. Rothen-Rutishauser, et al., Eur. J. Nanomed. 6 (4), 201 (2014). https://doi.org/10.1515/ejnm-2014-0042

    Article  Google Scholar 

  34. A. R. O. Rodrigues, B. G. Almeida, J. M. Rodrigues, et al., RSC Advances 7 (25), 15352 (2017). https://doi.org/10.1039/c7ra00447h

    Article  ADS  Google Scholar 

  35. K. Y. Vlasova, A. Piroyan, I. M. Le-Deygen, et al., J. Colloid Interface Sci. 552, 689 (2019). https://doi.org/10.1016/j.jcis.2019.05.071

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassant M. Salah.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interest.This work does not contain any studies involving animals or human subjects performed by the author.

Additional information

Abbreviations: AMF, alternating magnetic field; TEM, transmission electron microscopy; HPLC, high-performance liquid chromatography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassant M. Salah, Rady, M., Abdel-Halim, M. et al. Alternating Magnetic Field Induced Membrane Permeability in Erythromycin Magneto-Liposomes A Potential Solution to Antibiotic Resistance. BIOPHYSICS 66, 264–272 (2021). https://doi.org/10.1134/S0006350921020196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921020196

Navigation