Skip to main content
Log in

Investigation of DNA Damage Induced by Proton and Gamma Radiation

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In this study, we compared the effects of gamma and high-energy proton radiation (1000 MeV) on DNA in aqueous saline solutions (5 and 150 mM NaCl) at doses of 30 and 50 Gy. We used spectral methods (the ultraviolet absorption method, spectrophotometric methods for nucleic acid quantification, spectrophotometric DNA melting, and circular dichroism) for the estimation of the number of damaged nitrogenous bases and damage of the secondary DNA structure. It was found that under these conditions, proton radiation causes more severe destruction of nitrogenous bases and the secondary DNA structure than exposure to gamma rays at the same dose. In DNA irradiated with protons, the formation of crosslinks is possible and the probability for crosslinking increases with the increase of the ionic strength of the irradiated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yu. B. Kudryashov, Radiation Biophysics: Ionizing Radiation (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  2. H. Murshed, Fundamentals of Radiation Oncology: Physical, Biological and Clinical Aspects (Elsevier, London, 2019).

    Google Scholar 

  3. M. Beyzadeoglu, G. Ozyigit, and C. Ebruli, Basic Radiation Oncology (Springer, Berlin, 2010).

    Book  Google Scholar 

  4. G. E. Trufanov, M. A. Asaturyan, andi G. M. Zharinov, Radiation Therapy (GEOTAR-Media, Moscow, 2010) [in Russian].

  5. O. Desouky and G. Zhou, J. Taibah Univ. Sci. 10, 187 (2016).

    Google Scholar 

  6. C. Cao, D. Wang, C. Chung, et al., J. Thoracic Cardiovasc. Surg. 157 (1), 362 (2019).

    Article  Google Scholar 

  7. R. W. Gao, K. R. Olivier, S. S. Park, et al., Adv. Radiat. Oncol. 4, 314 (2019).

    Article  Google Scholar 

  8. S. Falk, Surgery 27, 4 (2009).

    Google Scholar 

  9. A. P. Chernyaev, G. I. Klenov, A. Yu. Bushmanov, et al., Med. Radiol. Radiats. Bezopasn. 64 (2), 11 (2019).

    Article  Google Scholar 

  10. A. S. Samoilov, Zh. Zh. Smirnova, V. A. Klimanov i dr., Med. Radiol. Radiats. Bezopasn. 64 (2), 41 (2019).

    Article  Google Scholar 

  11. V. S. Khoroshkov, Med. Radiol. Radiats. Bezopasn. 64 (2), 52 (2019).

    Article  Google Scholar 

  12. I. A. Gulidov, Radiats. Onkol. Yadern. Med., No. 1, 34 (2013)..

  13. V. E. Balakin, A. E. Shemyakov, S. I. Zaichkina, et al., Biophysics (Moscow) 62 (1), 138 (2017).

    Article  Google Scholar 

  14. L. L. Gol’din, V. P. Dzhelepov, M. F. Lomanov, et al., Sov. Phys. Uspekhi 16 (3), 402 (1973).

    Article  ADS  Google Scholar 

  15. M. Durante and H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016).

    Article  ADS  Google Scholar 

  16. 16. L. Brewster, R. Mohan, G. Mageras, et al., Int. J. Radiat. Oncol. Biol. Phys. 33, 1081 (1995).

    Article  Google Scholar 

  17. N. K. Abrosimov, A. A. Vorob’ev, V. A. Eliseev, et al., Med. Radiol. 32 (8), 10 (1987).

    Google Scholar 

  18. N. K. Abrosimov, Yu. A. Gavrikov, E. M. Ivanov, et al., J. Phys.: Conf. Ser. 41, 424 (2006).

    ADS  Google Scholar 

  19. N. I. Ryabchenko, Radiation and DNA (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  20. J. E. Coggle, Biological Effects of Radiation (Taylor & Francis, London, 1983).

    Google Scholar 

  21. C. Allen, T. B. Borak, H. Tsujii, and J. A. Nickoloff, Mutat. Res. 711, 150 (2011).

    Article  Google Scholar 

  22. E. Surdutovich, E. Scifoni, and A. V. Solov’yov, Mutat. Res. 704, 206 (2010).

    Article  Google Scholar 

  23. R. A. Mitteer Jr, Y. Wang, J. Shah, and S. Gordon, Sci. Rep. 5, 13961 (2015).

    Article  ADS  Google Scholar 

  24. J. Kobierski and E. Lipiec, J. Mol. Struct. 1178, 162 (2019).

    Article  ADS  Google Scholar 

  25. T. K. Gaisser, Astroparticle Phys. 35, 801 (2012).

    Article  ADS  Google Scholar 

  26. A. S. Spirin, Biokhimiya 23, 656 (1958).

    Google Scholar 

  27. S. A. Tankovskaia, O. M. Kotb, O. A. Dommes, and S. V. Paston, J. Phys: Conf. Ser. 1038, 012027 (2018).

    Google Scholar 

  28. S. A. Tankovskaia, O. M. Kotb, O. A. Dommes, and S. V. Paston, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 200, 85 (2018).

    Article  ADS  Google Scholar 

  29. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (Freeman, San Francisco, 1980), Parts 2, 3.

  30. A. A. Vedenov, A. M. Dykhne, and M. D. Frank-Kamenetsky, Usp. Fiz. Nauk 107 (3), 479 (1971).

    Article  Google Scholar 

  31. D. Y. Lando, A. S. Fridman, C.-L. Chang, et al., Anal. Biochem. 479, 28 (2015).

    Article  Google Scholar 

  32. D. S. Ershov, S. V. Paston, L. A. Kartsova, et al., Struct. Chem. 22 (2), 475 (2011).

    Article  Google Scholar 

  33. S. V. Paston and V. V. Zamotin, J. Struct. Chem. 50 (5), 970 (2009).

    Article  Google Scholar 

  34. S. V. Paston, O. A. Dommes, and A. E. Tarasov, in Circular Dichroism: Theory and Spectroscopy, Ed. by D. S. Rodgers (Nova Science Publ., New York, 2011), pp. 301–319.

    Google Scholar 

  35. E. V. Chikhirzhina, T. Yu. Starkova, E. I. Kostyleva, et al., Cell Tissue Biol. 5, 536 (2011).

    Article  Google Scholar 

  36. N. A. Kasyanenko, S. F. Bartoshevich, and E. V. Frisman, Mol. Biol. (Moscow) 19 (5), 13, (1985).

    Google Scholar 

  37. E. I. Ramm, V. I. Vorob’ev, T. M. Birshtein, et al., Eur. J. Biochem. 25, 245 (1972).

    Article  Google Scholar 

  38. D. Y. Lando, A. S. Fridman, A. G. Kabak, and A. A. Akhrem, J. Biomol. Struct. Dyn. 15, 141 (1997).

    Article  Google Scholar 

  39. N. A. Kas’yanenko, J. Struct. Chem. 47, 163 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using the equipment of the Research park of St.Petersburg State University at “Center for Optical and Laser Research” and “Center for Nanofabrication of Photoactive Materials (Nanophotonics)”.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 18-08-01500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Paston.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Statement of the welfare of animals

No studies on animals were carried out.

Additional information

Translated by A. Boutanaev

Abbreviations: LET is linear energy transfer, CD is circular dichroism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, O.M., Brozhik, D.S., Verbenko, V.N. et al. Investigation of DNA Damage Induced by Proton and Gamma Radiation. BIOPHYSICS 66, 202–208 (2021). https://doi.org/10.1134/S0006350921020123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921020123

Navigation