Skip to main content
Log in

Kinetic Modeling of Mitochondrial-Reticular Network Dynamics

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This study involves the mitochondrial-reticular network, which is functionally integrated into the processes that provide energy to all systems of an organism as an open, dynamic, self-regulatory organization involved in the energy homeostasis of the cell under the control of AMP-activated protein kinase as the main energy indicator. The mitochondrial-reticular network is regulated by at least three multidirectional energy vectors, that is, mitochondrial fission and fusion, and mitochondrial apoptosis mechanisms. A kinetic mathematical model of the mitochondrial-reticular network function is proposed. The search for effective strategies for the functioning of mitochondrial-reticular network is resolved into constrained optimization through the use of the Lagrange multiplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Physiological System of the Body, Ed by K. V Sudakov (Meditsina, Moscow, 1987) [in Russian].

    Google Scholar 

  2. P. K. Anokhin, Cybernetics of Functional Systems (Meditsina, Moscow, 1998) [in Russian].

    Google Scholar 

  3. B. Payne and P. Chinnery, Biochim. Biophys. Acta – Bioenergetics 1847 (11), 1347 (2015).

  4. J. Zhu and C. Chu, J. Alzheimer’s Disease 20 (2), 325 (2010).

    Article  Google Scholar 

  5. D. Wallace, W. Fan, and V. Procaccio, Annu. Rev. Pathol. 5, 297 (2011).

    Article  Google Scholar 

  6. S. Cardoso, R. Seiqa, and P. Moreira, Expert Rev. Neurother. 17 (1), 77 (2017).

    Article  Google Scholar 

  7. A. Grimm, A. Eckert, J. Neurochem. 143 (4), 418 (2017).

    Article  Google Scholar 

  8. M. Ristowand K. Zarse, Exp. Gerontol. 45 (6), 410 (2010).

    Article  Google Scholar 

  9. A. Fatokun, V. Dawson, and T. Dawson, Br. J. Pharmacol. 17 (8), 2000 (2014).

    Article  Google Scholar 

  10. A. Y. Harin, Nanotechnology 28 (10), 46 (2017).

    Google Scholar 

  11. I. O. Mazunin, N. V. Volodko, E. B. Starikovskaya, and R. I. Sukernik, Mol. Biol. (Moscow) 44 (5). 665 (2010).

    Article  Google Scholar 

  12. C. Desler et al., Curr. Med. Chem. 24 (10), 15 (2017).

    Google Scholar 

  13. J. Piquereau, F. Caffin, M. Novotova, et al., Front. Physiol. 4, Article No. 102 (2013). https://doi.org/10.3389/fphys.2013.00102

    Article  Google Scholar 

  14. V. P. Skulachev, Mol. Aspects Med. 20, 139 (1999).

    Article  Google Scholar 

  15. V. I. Shishkin, V. V. Shishkin, Y. A. Malenkov, and G. V. Kudriavtseva, Ann. Rheum. Dis. 76 (6), 507 (2017).

    Google Scholar 

  16. D. Chretien, P. Benit, H.-H. Ha, et al., PLoS Biol. 16 (1), e2003992 (2018). .https://doi.org/10.1371/journal.pbio.2003992

    Article  Google Scholar 

  17. S. Lorez-Arnaiz, P. Lombardi, A. G. Karadayian, et al., Neurochem. Res. 41 (1–2), 353 (2016).

  18. D. Harman, Biogerontology 10 (6), 773 (2009).

    Article  Google Scholar 

  19. A. Kuznetsov, M. Hermann, and V. Saks, Int. J. Biochem. Cell Biol. 41 (10), 1928 (2009).

    Article  Google Scholar 

  20. N. Lane, J. Theor. Biol. 434 (7), 124 (2017).

    Article  Google Scholar 

  21. T. Cali, D. Ottolini, A. Negro, et al., J. Biol. Chem. 287 (22), 17914 (2012).

    Article  Google Scholar 

  22. B. Westermann, Biochim. Biophys. Acta – Bioenergetics 1817 (10), 1833 (2012).

  23. M. V. Zakharchenko, Extended Abstract of Candidate’s Dissertation in Biology (Pushchino, 2012).

  24. L. Galluzzi, I. Vitale, and S. Aaronson, Cell Death Differ. 25, 486 (2018).

    Article  Google Scholar 

  25. G. Kroemer, L. Galluzzi, and P. Vandenabeele, Cell Death Differ. 16, 3 (2009).

    Article  Google Scholar 

  26. E. A. Metelkin, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2008).

  27. I. S. Vinogradskaya, T. G. Kuznetsova, and E. A. Suprunenko, Moscow Univ. Biol. Sci. Bull. 69 (2), 45 (2014).

    Article  Google Scholar 

  28. N. A. Kutukova, P. G. Nazarov, G. V. Kudryavtseva, and V. I. Shishkin, Usp. Gerontol. 29 (4). 586 (2016).

    Google Scholar 

  29. Y. Chen, J. Drezner, and D. Ryan, Manag. Sci. 46 (3), 436 (2000).

    Article  Google Scholar 

  30. J. Dejonckheere, S. Disney, M. Lambrecht, and D. Towill, Eur. J. Operat. Res. 5, 24 (2003).

    Google Scholar 

  31. C. S. Palmer, et al., EMBO Rep. 12 (6), 43 (2011).

    Article  Google Scholar 

  32. P. V. Deev, A. I. Bilyalov, and T. M. Zhampeisov, Geny Kletki 13 (1), 6 (2018).

    Google Scholar 

  33. O. V. Kovaleva, M. S. Shitova i I. B. Zborovskaya, Klin. Onkogematol. 7 (2), 103 (2014).

    Google Scholar 

  34. R. Gomez-Sintes, M. Ledesma, and P. Boya, Ageing Res. Rev. 32, 150, (2016).

    Article  Google Scholar 

  35. B. Hassard, Theory and Application of Hopf Bifurcation (Cambridge Univ.Press, Cambridge, 1981).

    MATH  Google Scholar 

  36. S. D. Khaitun, Development of Natural Scientific Views on the Relationship between the Law of Increasing Enthopy and Evolution: The Self-Ortanization Conceoptin Historical Reprospective (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  37. A. V Prasolov, Mathematical Methods in Economy Dynamics (Lan’ St. Petersburg, 2008) [in Russian]

  38. V. V. Podinovskii and V. D. Nogin, Pareto-optimal Solutions of Multi-criteria Problems (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  39. A. S. Kholevo, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fund. Napravl., Vol. 83 (VINITI, Moscow, 1991), pp. 5–132.

    Google Scholar 

  40. I. Prigogine and D. Kondepudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 1998; Nauka, Moscow, 2002).

  41. G. Nicolis and I. Prigogine, Self-Organisation in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977; Mir, Moscow, 1979).

  42. A. N. Remizov, Medical and Biological Physics (Drofa, Moscw, 2003) [in Russian].

  43. L. Accardi, Dialogues about Quantum Mechanics (PK-gD, Moscow, 2004) [in Russian].

  44. N. V. Khunderyakova et al., Zdorov’e Obraz. 21 Beke 19 (12), 298 (2017).

  45. L. Ferrucci and E. Fabbri, Nature Rev. Cardiol. 15, 505 (2018).

    Article  Google Scholar 

  46. P. Zhang and Y. Itan, Gene 10 (10), 797 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kudryavtseva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

COMPLIANCE WITH ETHICAL STANDARDS

The study was performed without the use of animals or people as subjects.

Additional information

Translated by P. Kuchina

Abbreviations: MRN, mitochondrial-reticular network; ESC, energy supply chains (respiratory mitochondrial chain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtseva, G.V., Malenkov, Y.A., Shishkin, V.V. et al. Kinetic Modeling of Mitochondrial-Reticular Network Dynamics. BIOPHYSICS 66, 240–247 (2021). https://doi.org/10.1134/S0006350921020135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921020135

Navigation