Skip to main content
Log in

Design of Large Scale MU-MIMO System with Joint Precoding and Detection Schemes for Beyond 5G Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The large scale multiuser multiple input multiple output (MU-MIMO) is one of the promising communication technology for 5G wireless networks as it offers reliability, high spectral efficiency and high throughput. The lattice reduction (LR) precoding based user level local likelihood ascent search (ULAS) detection scheme is proposed in this paper for efficient signal detection in large scale MU-MIMO system. The initial solution of ULAS algorithm is obtained from the LR precoding assisted zero forcing detector. The LR precoding transforms the non-orthogonal channel matrix into nearly orthogonal channel, which helps to mitigate inter antenna interference (IAI) exists at each user. The remaining multiuser interference (MUI) imposed to each user from undesired users is cancelled by the proposed ULAS multiuser detection scheme. Thus, the proposed LR precoding assisted ULAS mitigates both IAI and MUI unlike the classical detector, those try to moderate either IAI or MUI. By contrast, the proposed ULAS detector provides performance close to optimal maximum likelihood detector with just a fraction of its complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108, 363–388.

    Article  Google Scholar 

  2. Awoyemi, B. S., Alfa, A. S., & Maharaj, B. T. J. (2020). Resource optimisation in 5G and internet-of-things networking. Wireless Personal Communications, 111, 2671–2702.

    Article  Google Scholar 

  3. Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., et al. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97, 1645–1675.

    Article  Google Scholar 

  4. Kuhlins, C., Rathonyi, B., Zaidi, A., Hogan, M. (2020). Cellular networks for Massive IoT. Ericsson. https://www.ericsson.com/48ff1f/assets/local/reports-papers/white-papers/massive_iot_whitepaper.pdf. Accessed January 2020.

  5. Fu, S., Su, Z., Jia, Y., Zhou, H., Jin, Y., Ren, J., Wu, B., & Huq, K. M. S. (2017). Interference cooperation via distributed game in 5G networks. IEEE Internet of Things, 6(1), 311–320.

    Article  Google Scholar 

  6. Kim, T., & Kim, E. (2018). Uplink scheduling of MU-MIMO gateway for massive data acquisition in Internet of things. The Journal of Supercomputing, 74, 3549–3563.

    Article  Google Scholar 

  7. Chockalingam, A., & Rajan, B. S. (2014). Large MIMO systems. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Agiwal, M., Saxena, N., & Roy, A. (2018). Ten commandments of emerging 5G networks. Wireless Personal Communications, 98, 2591–2621.

    Article  Google Scholar 

  9. Panwara, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communications, 18, 64–84.

    Article  Google Scholar 

  10. Selvaraj, K., Judson, D., Ganeshkumar, P., et al. (2020). Low complexity linear detection for uplink multiuser MIMO SC-FDMA systems. Wireless Personal Communications, 112, 631–649.

    Article  Google Scholar 

  11. Fatema, N., Hua, G., Xiang, Y., Peng, D., & Natgunanathan, I. (2017). Massive MIMO linear precoding: A survey. IEEE Systems Journal, 12(4), 3920–3931.

    Article  Google Scholar 

  12. Lee, D. (2015). Performance analysis of zero-forcing precoded scheduling system with adaptive modulation for multiuser-multiple input multiple output transmission. IET Communications, 9(16), 2007–2012.

    Article  Google Scholar 

  13. He, X., Guo, Q., Tong, J., Xi, J., & Yu, Y. (2017). Low-complexity approximate iterative LMMSE detection for large-scale MIMO systems. Digital Sign Processing, 60, 134–139.

    Article  Google Scholar 

  14. Challa, N. R., & Bagadi, K. (2020). Design of massive multiuser MIMO system to mitigate inter antenna interference and multiuser interference in 5G wireless networks. Journal of Communications, 15(9), 693–701. https://doi.org/10.12720/jcm.15.9.693-701

    Article  Google Scholar 

  15. Riadi, A., Boulouird, M., & Hassani, M. M. (2021). ZF and MMSE detectors performances of a massive MIMO system combined with OFDM and M-QAM modulation. Wireless Personal Communications, 116, 3261–3276. https://doi.org/10.1007/s11277-020-07848-4

    Article  Google Scholar 

  16. Parikh, J., & Basu, A. (2020). Technologies assisting the paradigm shift from 4G to 5G. Wireless Personal Communications, 112, 481–502. https://doi.org/10.1007/s11277-020-07053-3

    Article  Google Scholar 

  17. Challa, N. R., & Bagadi, K. (2020). Likelihood ascent search detection for coded massive MU-MIMO systems to mitigate IAI and MUI. Radioelectronics and Communications Systems, 63(5), 223–234. https://doi.org/10.3103/S0735272720050015

    Article  Google Scholar 

  18. Casal, P. S., Coma, J. P. G., Fresnedo, O., & Castedo, L. (2018). Design of linear precoders for correlated sources in MIMO multiple access channels. IEEE Transactions on Communications, 68(12), 6110–6122.

    Article  Google Scholar 

  19. Challa, N. R., & Bagadi, K. (2020). Design of near-optimal local likelihood search-based detection algorithm for coded large-scale MU-MIMO system. International Journal of Communication Systems. https://doi.org/10.1002/dac.4436

    Article  Google Scholar 

  20. Jagannatham, A. K. (2017). Principles of modern wireless communication systems. New Delhi: McGraw Hill.

    Google Scholar 

  21. Zhang, W., Zhang, Z., Qi, L., & Dou, Z. (2019). Lattice-reduction-aided signal detection in spatial multiplexing MIMO–GFDM systems. Physical Communication, 33, 71–77.

    Article  Google Scholar 

  22. Ouni, N., Tourki, K., Mohaisen, M., & Bouallegue, R. (2019). Reduced complexity lattice-based multiple-input multiple-output schemes. IET Communications, 13(10), 1472–1481.

    Article  Google Scholar 

  23. Chen, C. E., & Sheen, W. H. (2013). Design of lattice reduction algorithms for linear-precoded MIMO system. IEEE Wireless Communications Letters, 3(1), 46–49.

    Article  Google Scholar 

  24. Fang, S., Wu, J., Lu, C., Yue, Z. D., & Han, Y. C. (2016). Simplified QR-decomposition based and lattice reduction-assisted multi-user multiple-input–multiple-output precoding scheme. IET Communications, 10(5), 586–593.

    Article  Google Scholar 

  25. Lyu, S., & Ling, C. (2018). Hybrid vector perturbation precoding: The blessing of approximate message passing. IEEE Transactions on Signal Processing, 67(1), 178–193.

    Article  MathSciNet  Google Scholar 

  26. Lenin Gopal, L., Rong, Y., & Zang, Z. (2015). Tomlinson-Harashima precoding based transceiver design for MIMO relay systems with channel covariance information. IEEE Transactions on Wireless Communications, 14(10), 5513–5525.

    Article  Google Scholar 

  27. Wübben, D., Seethaler, D., Jaldén, J., & Matz, G. (2011). Lattice reduction. IEEE Signal Processing Magazine, 28(3), 70–91.

    Article  Google Scholar 

  28. Wen, Q., & Ma, X. (2016). Efficient greedy LLL algorithms for lattice decoding. IEEE Transactions on Wireless Communications, 15(5), 356–3572.

    Article  Google Scholar 

  29. Menon, U. V., Challa, N. R., & Bagadi, K. (2019). Lenstra Lenstra Lovász (LLL) assisted likelihood ascent search (LAS) algorithm for signal detection in massive MIMO. In Proceedings of international conference on vision towards emerging trends in communication and networking. https://doi.org/10.1109/ViTECoN.2019.8899594

  30. Nguyen, T. B., Le, M. T., & Ngo, V. D. (2019). Low complexity lattice reduction aided detectors for high load massive MIMO systems. Wireless Personal Communications, 109, 1805–1825. https://doi.org/10.1007/s11277-019-06653-y

    Article  Google Scholar 

  31. Mussi, A. M., Costa, B. F., & Abrão, T. (2017). Efficient lattice reduction aided detectors under realistic MIMO channels. Wireless Personal Communications, 95, 947–978. https://doi.org/10.1007/s11277-016-3807-6

    Article  Google Scholar 

  32. Yang, Y., & Kim, J. (2013). Fixed-complexity LLL-based signal detection for MIMO systems. IEEE Transactions on Vehicular Technology, 62(3), 1415–1419.

    Article  Google Scholar 

  33. Bagadi, K. P., Annepu, V., & Das, S. (2016). Recent trends in multiuser detection techniques for SDMA–OFDM communication system. Physical Communications, 20, 93–108.

    Article  Google Scholar 

  34. Albreem, M. A., Juntti, M., & Shahabuddin, S. (2019). Massive MIMO detection techniques: A survey. IEEE Communications Surveys and Tutorials, 21(4), 3109–3132.

    Article  Google Scholar 

  35. Challa, N. R., & Bagadi, K. (2018). Lattice reduction assisted likelihood ascent search algorithm for multiuser detection in massive MIMO system. Proceedings of IEEE India Council International Conference. https://doi.org/10.1109/INDICON45594.2018.8987139

    Article  Google Scholar 

  36. Gudla, V. V., & Kumaravelu, V. B. (2019). Dynamic spatial modulation for next generation networks. Physical Communications, 34, 90–104.

    Article  Google Scholar 

  37. Pan, S., & Chen, P. (2021). User selection in MU-MIMO system with limited CSI feedback. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-08020-8

    Article  Google Scholar 

  38. Kansal, L., Sharma, V., & Singh, J. (2019). Multiuser massive MIMO-OFDM system incorporated with diverse transformation for 5G applications. Wireless Personal Communications, 109, 2741–2756. https://doi.org/10.1007/s11277-019-06707-1

    Article  Google Scholar 

  39. Li, L., Meng, W., & Li, C. (2017). Semidefinite further relaxation on likelihood ascent search detection algorithm for high-order modulation in massive MIMO system. IET Communications, 11(6), 801–808.

    Article  Google Scholar 

  40. Chaudhary, M., Meena, N. K., & Kshetrimayum, R. S. (2017). Local search based near optimal low complexity detection for large MIMO System. In Proceedings of IEEE international conference on advanced networks and telecommunications systems. https://doi.org/10.1109/ANTS.2016.7947792.

  41. Chihaoui, I., & Ammari, M. L. (2019). LAS detector with soft-output MMSE initialization under imperfect channel estimation and channel correlation. Wireless Personal Communications, 108, 213–220. https://doi.org/10.1007/s11277-019-06397-9

    Article  Google Scholar 

  42. Agarwal, S., Sah, A. K., & Chaturvedi, A. K. (2017). Likelihood-based tree search for low complexity detection in large MIMO systems. IEEE Wireless Communications Letters, 6(4), 450–453.

    Article  Google Scholar 

  43. Albataineh, Z. (2021). Low-complexity near-optimal iterative signal detection based on MSD-CG method for uplink massive MIMO systems. Wireless Personal Communications, 116, 2549–2563. https://doi.org/10.1007/s11277-020-07810-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalapraveen Bagadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challa, N.R., Bagadi, K. Design of Large Scale MU-MIMO System with Joint Precoding and Detection Schemes for Beyond 5G Wireless Networks. Wireless Pers Commun 121, 1627–1646 (2021). https://doi.org/10.1007/s11277-021-08688-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08688-6

Keywords

Navigation