Skip to main content

Advertisement

Log in

A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS–LPBN–preBötC circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bassi M, Furuya WI, Zoccal DB, Menani JV, Colombari DS, Mulkey DK. Facilitation of breathing by leptin effects in the central nervous system. J Physiol 2016, 594: 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  2. Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, et al. Leptin: master regulator of biological functions that affects breathing. Compr Physiol 2020, 10: 1047–1083.

    Article  PubMed  Google Scholar 

  3. Pierce AM, Brown LK. Obesity hypoventilation syndrome: Current theories of pathogenesis. Curr Opin Pulm Med 2015, 21: 557–562.

    Article  CAS  PubMed  Google Scholar 

  4. Imayama I, Prasad B. Role of leptin in obstructive sleep apnea. Ann Am Thorac Soc 2017, 14: 1607–1621.

    Article  PubMed  Google Scholar 

  5. Bassi M, Giusti H, Leite CM, Anselmo-Franci JA, do Carmo JM, da Silva AA, et al. Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflugers Arch 2012, 464: 145–153.

  6. Yuan F, Wang HQ, Feng JQ, Wei ZQ, Yu HX, Zhang XJ, et al. Leptin signaling in the carotid body regulates a hypoxic ventilatory response through altering TASK channel expression. Front Physiol 2018, 9: 249.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wei ZQ, Hao YC, Yu HX, Shi L, Jing XY, Zhang X, et al. Disordered Leptin signaling in the retrotrapezoid nucleus is associated with the impaired hypercapnic ventilatory response in obesity. Life Sci 2020, 257: 117994.

  8. Ribeiro MJ, Sacramento JF, Gallego-Martin T, Olea E, Melo BF, Guarino MP, et al. High fat diet blunts the effects of leptin on ventilation and on carotid body activity. J Physiol 2018, 596: 3187–3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donovan LM, Kapur VK. Prevalence and characteristics of central compared to obstructive sleep apnea: Analyses from the sleep heart health study cohort. Sleep 2016, 39: 1353–1359.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eckert DJ, Jordan AS, Merchia P, Malhotra A. Central sleep apnea: Pathophysiology and treatment. Chest 2007, 131: 595–607.

    Article  PubMed  Google Scholar 

  11. Del Negro CA, Funk GD, Feldman JL. Breathing matters. Nat Rev Neurosci 2018, 19: 351–367.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Feldman JL, Del Negro CA, Gray PA. Understanding the rhythm of breathing: So near, yet so far. Annu Rev Physiol 2013, 75: 423–452.

    Article  CAS  PubMed  Google Scholar 

  13. Smith JC, Abdala AP, Rybak IA, Paton JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 2009, 364: 2577–2587.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic projections to excitatory and inhibitory preBötzinger complex neurons. Front Neuroanat 2020, 14: 58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu N, Fu CR, Yu HX, Wang YK, Shi L, Hao YC, et al. Respiratory control by Phox2b-expressing neurons in a locus coeruleus-preBötzinger complex circuit. Neurosci Bull 2021, 37: 31–44.

    Article  CAS  PubMed  Google Scholar 

  16. Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 2006, 499: 64–89.

    Article  PubMed  Google Scholar 

  17. Dean JB, Putnam RW. The caudal solitary complex is a site of central CO2 chemoreception and integration of multiple systems that regulate expired CO2. Respir Physiol Neurobiol 2010, 173: 274–287.

    Article  PubMed  Google Scholar 

  18. Li N, Guan Y, Tian YM, Ma HJ, Zhang XJ, Zhang Y, et al. Chronic intermittent hypobaric hypoxia ameliorates renal vascular hypertension through up-regulating NOS in nucleus tractus solitarii. Neurosci Bull 2019, 35: 79–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, et al. Leptin targets in the mouse brain. J Comp Neurol 2009, 514: 518–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Do J, Chang Z, Sekerková G, McCrimmon DR, Martina M. A leptin-mediated neural mechanism linking breathing to metabolism. Cell Rep 2020, 33: 108358.

  21. Inyushkin AN, Inyushkina EM, Merkulova NA. Respiratory responses to microinjections of leptin into the solitary tract nucleus. Neurosci Behav Physiol 2009, 39: 231–240.

    Article  CAS  PubMed  Google Scholar 

  22. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR. Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 1985, 2006(101): 618–627.

    Google Scholar 

  23. Song G, Poon CS. Functional and structural models of pontine modulation of mechanoreceptor and chemoreceptor reflexes. Respir Physiol Neurobiol 2004, 143: 281–292.

    Article  PubMed  Google Scholar 

  24. Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 2016, 7: 11905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism 2015, 64: 13–23.

    Article  PubMed  Google Scholar 

  26. Zhang Y, Chua S. Leptin function and regulation. Compr Physiol 2017, 8: 351–369.

    PubMed  Google Scholar 

  27. Williams KW, Smith BN. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: Implications for ingestive behaviour. J Physiol 2006, 573: 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li TL, Chiou LC, Lin YS, Hsieh JR, Hwang LL. Electrophysiological study on the effects of leptin in rat dorsal motor nucleus of the vagus. Am J Physiol Regul Integr Comp Physiol 2007, 292: R2136–R2143.

    Article  CAS  PubMed  Google Scholar 

  29. Williams KW, Sohn JW, Donato J, Lee CE, Zhao JJ, Elmquist JK, et al. The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J Neurosci 2011, 31: 13147–13156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 2008, 118: 1796–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG Jr. Leptin Acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 2014, 34: 11405–11415.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fu CR, Shi L, Wei ZQ, Yu HX, Hao YC, Tian YM, et al. Activation of Phox2b-expressing neurons in the nucleus tractus solitarii drives breathing in mice. J Neurosci 2019, 39: 2837–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. 2nd ed. San Diego: Academic Press, 2003.

    Google Scholar 

  34. Yackle K, Schwarz LA, Kam K, Sorokin JM, Huguenard JR, Feldman JL, et al. Breathing control center neurons that promote arousal in mice. Science 2017, 355: 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang S, Benamer N, Zanella S, Kumar NN, Shi YT, Bévengut M, et al. TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci 2013, 33: 16033–16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kline DD, Wang S, Kunze DL. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia. J Neurophysiol 2019, 121: 881–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martinez VK, Saldana-Morales F, Sun JJ, Zhu PJ, Costa-Mattioli M, Ray RS. Off-target effects of clozapine-N-oxide on the chemosensory reflex are masked by high stress levels. Front Physiol 2019, 10: 521.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang JE, Tan LB, Ren YQ, Liang JW, Lin R, Feng QR, et al. Presynaptic excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell 2016, 166: 716–728.

    Article  CAS  PubMed  Google Scholar 

  39. Girven KS, Sparta DR. Probing deep brain circuitry: New advances in in vivo calcium measurement strategies. ACS Chem Neurosci 2017, 8: 243–251.

    Article  CAS  PubMed  Google Scholar 

  40. Gasparini S, Howland JM, Thatcher AJ, Geerling JC. Central afferents to the nucleus of the solitary tract in rats and mice. J Comp Neurol 2020, 528: 2708–2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dampney RA. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994, 74: 323–364.

    Article  CAS  PubMed  Google Scholar 

  42. Takakura AC, Moreira TS, West GH, Gwilt JM, Colombari E, Stornetta RL, et al. GABAergic pump cells of solitary tract nucleus innervate retrotrapezoid nucleus chemoreceptors. J Neurophysiol 2007, 98: 374–381.

    Article  CAS  PubMed  Google Scholar 

  43. Moreira TS, Takakura AC, Colombari E, West GH, Guyenet PG. Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors. J Physiol 2007, 580: 285–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Canning BJ. Encoding of the cough reflex. Pulm Pharmacol Ther 2007, 20: 396–401.

    Article  CAS  PubMed  Google Scholar 

  45. Fu CR, Xue JY, Wang R, Chen JT, Ma L, Liu YX, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol 2017, 595: 4973–4989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zafar T, Brouillard C, Lanfumey L, Sévoz-Couche C. A hypothalamo-midbrain-medullary pathway involved in the inhibition of the respiratory chemoreflex response induced by potassium cyanide in rodents. Neuropharmacology 2018, 128: 152–167.

    Article  CAS  PubMed  Google Scholar 

  47. Tsai VW, Zhang HP, Manandhar R, Schofield P, Christ D, Lee-Ng KKM, et al. GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J Obes (Lond) 2019, 43: 2370–2380.

    Article  Google Scholar 

  48. Vong L, Ye C, Yang ZF, Choi B, Chua S Jr, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 2011, 71: 142–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng WW, Ndoka E, Hutch C, Roelofs K, MacKinnon A, Khoury B, et al. Leptin receptor-expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight 2020, 5: 134359.

  50. Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 2011, 121: 2413–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bassi M, Furuya WI, Menani JV, Colombari DS, do Carmo JM, da Silva AA, et al. Leptin into the ventrolateral medulla facilitates chemorespiratory response in leptin-deficient (ob/ob) mice. Acta Physiol (Oxf) 2014, 211: 240–248.

  52. Yang WZ, Du XS, Zhang W, Gao CC, Xie HC, Xiao Y, et al. Parabrachial neuron types categorically encode thermoregulation variables during heat defense. Sci Adv 2020, 6: eabb9414.

  53. Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN, Lyubetskaya A, et al. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 2017, 96: 190-206.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song G, Xu H, Wang H, MacDonald SM, Poon CS. Hypoxia-excited neurons in NTS send axonal projections to Kölliker-Fuse/parabrachial complex in dorsolateral Pons. Neuroscience 2011, 175: 145–153.

    Article  CAS  PubMed  Google Scholar 

  55. Tian Y, Wang S, Ma Y, Lim G, Kim H, Mao J. Leptin enhances NMDA-induced spinal excitation in rats: A functional link between adipocytokine and neuropathic pain. Pain 2011, 152: 1263–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Neyens D, Zhao H, Huston NJ, Wayman GA, Ritter RC, Appleyard SM. Leptin sensitizes NTS neurons to vagal input by increasing postsynaptic NMDA receptor currents. J Neurosci 2020, 40: 7054–7064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thompson JL, Borgland SL. Presynaptic leptin action suppresses excitatory synaptic transmission onto ventral tegmental area dopamine neurons. Biol Psychiatry 2013, 73: 860–868.

    Article  CAS  PubMed  Google Scholar 

  58. Murayama S, Yamamoto K, Fujita S, Takei H, Inui T, Ogiso B, et al. Extracellular glucose-dependent IPSC enhancement by leptin in fast-spiking to pyramidal neuron connections via JAK2-PI3K pathway in the rat insular cortex. Neuropharmacology 2019, 149: 133–148.

    Article  CAS  PubMed  Google Scholar 

  59. Shanley LJ, Irving AJ, Harvey J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 2001, 21: RC186.

  60. Gómez-Hurtado N, Domínguez-Rodríguez A, Mateo P, Fernández-Velasco M, Val-Blasco A, Aizpún R, et al. Beneficial effects of leptin treatment in a setting of cardiac dysfunction induced by transverse aortic constriction in mouse. J Physiol 2017, 595: 4227–4243.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31800981 and 31971058), the Natural Science Foundation of Hebei Province for Distinguished Young Scholars (H2020206509), and a Hebei Province Government Grant (CXZZBS2020119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Wang or Fang Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Shi, L., Chen, J. et al. A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii. Neurosci. Bull. 38, 149–165 (2022). https://doi.org/10.1007/s12264-021-00742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00742-4

Keywords

Navigation