Skip to main content
Log in

An Ab Initio Molecular Dynamics Simulation of Liquid FeO–SiO2 Silicate System with Sulfur Dissolving

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The desulfurization mechanism is of great significance to quality improvement in metallurgical process. In this work, the structural features, chemical and dynamical properties of the liquid FeO·SiO2 were calculated under 2000 K through ab initio molecular dynamics simulations. Further calculation of desulfurization was conducted based on the structural evolution information. The results showed that the liquid FeO·SiO2 is primarily constituted by Si–O and Fe–O bonds, with the former being strong covalent bonds, while the latter showing the feature of ionic bonding. Bader charges analysis indicated that Fe and O have a wide range of charge states, while that of Si is relatively concentrated. It is found that the sulfur atom that is incorporated into the liquid FeO·SiO2 tends to form a stable bonding structure with three iron atoms, and the Si–S bond seems to be unstable thus, unable to exist in the S-doped FeO·SiO2 silicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y Taniguchi, N Sano and S Seetharaman, ISIJ Int. 2009, vol. 49, pp. 156-163.

    Article  CAS  Google Scholar 

  2. L Wang, Y Wang, Q Wang and K Chou, Metall. Mater. Trans. B 2016, vol. 47, pp. 10-15.

    Article  CAS  Google Scholar 

  3. Y-B Kang and AD Pelton, Metall. Mater. Trans. B 2009, vol. 40, pp. 979-994.

    Article  CAS  Google Scholar 

  4. L Wang, Y Wang, K-C Chou and S Seetharaman, Metall. Mater. Trans. B 2016, vol. 47, pp. 2558-2563.

    Article  CAS  Google Scholar 

  5. C. Wang, Y.-S. Han, J.-S. Zhang, D. Xiao, J. Yang, J. Chen and Q. Liu, Ironmak. Steelmak. 2020, pp. 1–11.

  6. A. Ayyandurai, Adv. Mater. Process. Technol. 2021, pp. 1–17.

  7. CJB Fincham and FD Richardson, Proc R Soc Lond Ser A Math Phys Sci 1954, vol. 223, pp. 40-62.

    CAS  Google Scholar 

  8. MM Nzotta, D Sichen and S Seetharaman, Metall. Mater. Trans. B 1999, vol. 30, pp. 909-920.

    Article  CAS  Google Scholar 

  9. B. Chen, R.G. Reddy and M. Blander, Argonne National Lab., IL (USA), 1988.

  10. F.N.H. Schrama, E.M. Beunder, S.K. Panda, H.-J. Visser, E. Moosavi-Khoonsari, A. Hunt, J. Sietsma, R. Boom and Y. Yang, Ironmak. Steelmak. 2021, pp. 1–11.

  11. L Wang, Y Wang, W Qi and K Chou, Metall. Mater. Trans. B 2016, vol. 47, pp. 10-15.

    Article  CAS  Google Scholar 

  12. JH Park, ISIJ Int. 2012, vol. 52, pp. 2303-2304.

    Article  CAS  Google Scholar 

  13. LJ Wang, S Seetharaman Metall. Mater. Trans. B, 2010, vol. 41, pp. 367-373.

    Article  CAS  Google Scholar 

  14. KS Shaaban, EAA Wahab, ER Shaaban and SA Mahmoud, J. Electron. Mater. 2020, vol. 49, pp. 2040-2049.

    Article  CAS  Google Scholar 

  15. L Wang and S Seetharaman, Metall. Mater. Trans. B 2010, vol. 41, pp. 946-954.

    Article  CAS  Google Scholar 

  16. G-H Park, Y-B Kang and JH Park, ISIJ Int. 2011, vol. 51, pp. 1375-1382.

    Article  Google Scholar 

  17. X He, L Wang and K Chou, Ceram. Int. 2021, vol. 47, pp. 12476-12482.

    Article  CAS  Google Scholar 

  18. LJ Wang, M Hayashi, KC Chou and S Seetharaman, Metall. Mater. Trans. B 2012, vol. 43, pp. p.1338-1343.

    Article  CAS  Google Scholar 

  19. V Cristiglio, L Hennet, GJ Cuello, I Pozdnyakova, MR Johnson, HE Fischer, D Zanghi and DL Price, J. Non-Cryst. Solids 2008, vol. 354, pp. 5337-5339.

    Article  CAS  Google Scholar 

  20. N Li and W-Y Ching, J. Non-Cryst. Solids 2014, vol. 383, pp. 28-32.

    Article  CAS  Google Scholar 

  21. T Ohkubo, E Tsuchida, K Deguchi, S Ohki, T Shimizu, T Otomo and Y Iwadate, J. Am. Ceram. Soc. 2018, vol. 101, pp. 1122-1134.

    Article  CAS  Google Scholar 

  22. T. Ohkubo, S. Urata, Y. Imamura, T. Taniguchi, N. Ishioka, M. Tanida, E. Tsuchida, L. Deng and J. Du, J. Phys. Chem. C, 2021.

  23. AB Belonoshko and LS Dubrovinsky, Geochim. Cosmochim. Acta 1995, vol. 59, pp. 1883-1889.

    Article  CAS  Google Scholar 

  24. J Kieffer and CA Angell, J Chem Phys 1989, vol. 90, pp. 4982-4991.

    Article  CAS  Google Scholar 

  25. Y-T Shih and J-H Jean, Ceram. Int. 2018, vol. 44, pp. 11554-11561.

    Article  CAS  Google Scholar 

  26. C Jiang, K Li, J Zhang, Q Qin, Z Liu, M Sun, Z Wang and W Liang, J. Non-Cryst. Solids 2018, vol. 502, pp. 76-82.

    Article  CAS  Google Scholar 

  27. Z Bi, K Li, C Jiang, J Zhang, S Ma, M Sun, Z Wang and H Li, Ceram. Int. 2021, vol. 47, pp. 12252-12260.

    Article  CAS  Google Scholar 

  28. AN Cormack and Y Cao, Mol Eng 1996, vol. 6, pp. 183-227.

    Article  CAS  Google Scholar 

  29. Y Wang and PB Balbuena, J Phys Chem B 2004, vol. 108, pp. 15694-15702.

    Article  CAS  Google Scholar 

  30. F Qian, X Chen and X Yang, Chem. Phys. Lett. 2019, vol. 714, pp. 37-44.

    Article  CAS  Google Scholar 

  31. W Münch, K-D Kreuer, W Silvestri, J Maier and G Seifert, Solid State Ion 2001, vol. 145, pp. 437-443.

    Article  Google Scholar 

  32. S Ma, AJ Brown, R Yan, RL Davidchack, PB Howes, C Nicklin, Q Zhai, T Jing and H Dong, Commun. Chem. 2019, vol. 2, pp. 1-12.

    Article  CAS  Google Scholar 

  33. S Ma, R Yan, N Zong, RL Davidchack, T Jing and H Dong, Phys Rev Mater 2020, vol. 4, p. 023401.

    Article  CAS  Google Scholar 

  34. V.B. Rajkumar, Y. Du, J. Wang and Y. Liu, J. Mol. Liq. 2020, p. 112930.

  35. WY Wang, JJ Han, HZ Fang, J Wang, YF Liang, SL Shang, Y Wang, XJ Liu, LJ Kecskes and SN Mathaudhu, Acta Mater. 2015, vol. 97, pp. 75-85.

    Article  CAS  Google Scholar 

  36. P Stoch, P Goj, A Wajda and A Stoch, Ceram. Int. 2021, vol. 47, pp. 1891-1902.

    Article  CAS  Google Scholar 

  37. N de Koker, BB Karki and L Stixrude, Earth. Planet. Sci. Lett. 2013, vol. 361, pp. 58-63.

    Article  CAS  Google Scholar 

  38. M Benoit, S Ispas and ME Tuckerman, Phys Rev B 2001, vol. 64, p. 224205.

    Article  CAS  Google Scholar 

  39. K Baral, A Li and W-Y Ching, J Phys Chem A 2017, vol. 121, pp. 7697-7708.

    Article  CAS  Google Scholar 

  40. H. Gong, B. Song, Y. Yuting, P. Wang, Z. Cao, X. Chen, G. Zhao, S. Peng, Y. Liu, and G. Han, J. Am. Ceram. Soc. 2021.

  41. J Sarnthein, A Pasquarello and R Car, Phys. Rev. Lett. 1995, vol. 74, p. 4682.

    Article  CAS  Google Scholar 

  42. G Spiekermann, M Steele-MacInnis, PM Kowalski, C Schmidt and S Jahn, Chem. Geol. 2013, vol. 346, pp. 22-33.

    Article  CAS  Google Scholar 

  43. D Huang, J Badro, J Brodholt and Y Li, Geophys Res Lett 2019, vol. 46, pp. 6397-6405.

    Article  CAS  Google Scholar 

  44. S Sueno, M Kimata and CT Prewitt, Am. Mineral. 1984, vol. 69, pp. 264-269.

    CAS  Google Scholar 

  45. G Kresse and J Furthmüller, Phys Rev B 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  46. JP Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  47. G Kresse and J Hafner, Phys Rev B 1994, vol. 49, p. 14251.

    Article  CAS  Google Scholar 

  48. G Kresse and D Joubert, Phys Rev B 1999, vol. 59, p. 1758.

    Article  CAS  Google Scholar 

  49. PE Blöchl, Phys Rev B 1994, vol. 50, p. 17953.

    Article  Google Scholar 

  50. W-G Seo and F Tsukihashi, Mater Trans 2005, vol. 46, pp. 1240-1247.

    Article  CAS  Google Scholar 

  51. DP Agarwal and DR Gaskell, Metall. Trans. B 1975, vol. 6, pp. 263-267.

    Article  Google Scholar 

  52. A Wejnarth, Trans Electrochem Soc 1934, vol. 65, p. 177.

    Article  Google Scholar 

  53. GW Toop and CS Somis, Can. Metall. Q. 1962, vol. 1, pp. 129-152.

    Article  CAS  Google Scholar 

  54. GW Toop and CS Samis, Trans Metall Soc AIME 1962, vol. 224, pp. 878

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (No. 51922003) and the Fundamental Research Funds for the Central Universities (FRF-TP-19-004C1).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2021; accepted June 13, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Ma, S., Wang, L. et al. An Ab Initio Molecular Dynamics Simulation of Liquid FeO–SiO2 Silicate System with Sulfur Dissolving. Metall Mater Trans B 52, 3346–3353 (2021). https://doi.org/10.1007/s11663-021-02263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02263-x

Navigation