Skip to main content
Log in

Genome-wide identification and expression analysis of bZIP transcription factors in oil palm (Elaeis guineensis Jacq.) under abiotic stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The bZIP transcription factors are well-known transcription regulators and play a key role in regulating various developmental, biological processes, and stress responses in plants. However, information on bZIP transcription factors is not yet available in oil palm, an important oil yielding crop. The present study identified the 97 bZIP transcription factor family members in oil palm genome via a genome-wide approach. Phylogenetic analysis clustered all EgbZIPs into 12 clusters with Arabidopsis and rice bZIPs. EgbZIP gene structure analysis showed a distinct variation in the intron–exon organization among all EgbZIPs. Conserved motif analysis demonstrated the occurrence of ten additional conserved motifs besides having a common bZIP domain. All the identified 97 EgbZIPs were unevenly distributed on 16 chromosomes and exhibited tandem duplication in oil palm genome. Our results aslo demonstrated that tissue-specific expression patterns of EgbZIPs based on the available transcriptome data of six different tissue of oil palm. Stress-responsive expression analysis showed that 11EgbZIP transcription factors were highly expressed under cold, salinity, drought stress conditions. Taken together, our findings will provide insightful information on bZIP transcription factors as one of the stress-responsive regulators in oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and materials used in this research are publicly available. Other supporting data are provided as supplementary files with the manuscript.

Not applicable

Abbreviations

NLS:

Nuclear localization signal

UTR:

Untranslated region

MEME:

Multiple expectation maximization for motif elucidation

References

  • Abdullah SNA, Azzeme AM, Ebrahimi M, Ariff EAKE, Hanifiah FHA (2017) Transcription factors associated with abiotic stress and fruit development in oil palm. In: Abdullah S., Chai-Ling H., Wagstaff C. (eds) Crop Improvement. Springer, Cham

  • Agarwal P, Baranwal VK, Khurana P (2019) Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci Rep 9:4608. https://doi.org/10.1038/s41598-019-40659-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir- Hossain M, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Choon-Hwan Lee CH, An GPhun Bum Park, et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Azeem F, Tahir H, Ijaz U (2020) A genome-wide comparative analysis of bZIP transcription factors in G. arboreum and G. raimondii (Diploid ancestors of present-day cotton). Physiol Mol Biol Plants 26:433–444. https://doi.org/10.1007/s12298-020-00771-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillo EH, Kimotho RN, Zhang Z, Xu P (2019) Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10(10):771. https://doi.org/10.3390/genes10100771

    Article  CAS  PubMed Central  Google Scholar 

  • Baloglu MC, Eldem V, Hajyzadeh M, Unver T (2014) Genome-wide analysis of the bZIP transcription factors in Cucumber. PLoS One 9(4):e96014

    Article  Google Scholar 

  • Barcelos E, Rios SA, Cunha RN (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6:190

    Article  Google Scholar 

  • Chen H, Chen W, Zhou JL, He H, Chen LB, Chen HD, Deng XW (2012) Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci 193:8–17

    Article  Google Scholar 

  • Chen C, Xia R, Chen H, He Y (2018) TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv [Preprint] https://doi.org/10.1101/289660

  • Choi HI, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  Google Scholar 

  • Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999) The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana. Genes Dev 13:334–344

    Article  CAS  Google Scholar 

  • Das P, Lakra N, Nutan KK, Singla Pareek SL, Pareek A (2019) A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice 12:58

    Article  Google Scholar 

  • Dröge-Laser W, Snoek B, Snel B, Weiste C (2018) The Arabidopsis bZIP transcription factor family-an update. Curr Opini Plant Biol 45:36–49. https://doi.org/10.1016/j.pbi.2018.05.001

    Article  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183(3):557–564

    Article  Google Scholar 

  • Foster R, Izawa T, Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    Article  CAS  Google Scholar 

  • Fujita Y (2005) AREB1 Is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  Google Scholar 

  • Gai W-X, Ma X, Qiao YM, Shi BH, Li QH, Wei AM, Liu KK, ZH Gong (2020) Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci 11:139. https://doi.org/10.3389/fpls.2020.00139

    Article  PubMed  PubMed Central  Google Scholar 

  • Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259

    Article  CAS  Google Scholar 

  • Hu W, Wang LZ, Tie WW, Yan Y, Ding ZH, Liu JH, Li MY, Peng M, Xu BY, Jin ZQ (2016) Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana. Sci Rep 6:30203

    Article  CAS  Google Scholar 

  • Hurst H (1995) Transcription factors 1: bZIP proteins. Protein Profile 1:101–168

    Google Scholar 

  • Iqbal A, Yang YD, Qadri R, Wu Y, Li J, Shah F, Hanayun M, Hussain A (2019) QRREM method for the isolation of high-quality RNA from the complex matrices of coconut. Biosci Rep 39(1):BSR20181163

    Article  Google Scholar 

  • Izawa T, Foster R, Nakajima M, Shimamoto K, Chua NH (1994) The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6:1277–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T (2002) BZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111. https://doi.org/10.1016/S1360-1385(01)02223-3

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Xu W, Liu A (2014) Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). Planta 239:299–312. https://doi.org/10.1007/s00425-013-1979-9

    Article  CAS  PubMed  Google Scholar 

  • Li D, Fu F, Zhang H, Song F (2015) Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genom 16:771. https://doi.org/10.1186/s12864-015-1990-6

    Article  CAS  Google Scholar 

  • Li Y, Meng D, Li M, Cheng L (2016) Genome-wide identification and expression analysis of the bZIP gene family in apple (Malus domestica). Tree Genet Genomes 12:82. https://doi.org/10.1007/s11295-016-1043-6

    Article  Google Scholar 

  • Li F, Liu J, Guo X (2020a) Genome-wide survey, characterization, and expression analysis of bZIP transcription factors in Chenopodium quinoa. BMC Plant Biol 20:405. https://doi.org/10.1186/s12870-020-02620-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li L, ShangGuan G (2020b) Genome-wide identification and expression analysis of bZIP gene family in Carthamus tinctorius L. Sci Rep 10:15521. https://doi.org/10.1038/s41598-020-72390-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SY, Zhang Q, Jin YH, Zou JX, Zheng YS, Li DD (2020c) A MADS-box gene, EgMADS21, negatively regulates EgDGAT2 expression and decreases polyunsaturated fatty acid accumulation in oil palm (Elaeis guineensis Jacq.). Plant Cell Rep 39:1505–1516. https://doi.org/10.1007/s00299-020-02579-z

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Srivastava R, Howell SH (2008) Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis. Plant Cell Environ 31:1735–1743

    Article  CAS  Google Scholar 

  • Liu L, White MJ, MacRae TH (2010) Transcription factors and their genes in higher plants. FEBS J 262(2):247–257

    Google Scholar 

  • Liu C, Wu Y, Wang X (2012) bZIP transcription factor OsbZIP52/RISBZ5. a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    Article  CAS  Google Scholar 

  • Liu C, Mao BG, Ou SJ, Wang W, Liu LC, Wu YB, Chu CC, Wang XP (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  CAS  Google Scholar 

  • Liu M, Wen Y, Sun W, Ma Z, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H (2019) Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat. BMC Genom 20(1):483

    Article  Google Scholar 

  • Liu Y, Chai M, Zhang M, He Q, Su Z, Priyadarshani SVGN, Liu L, Dong G, Qin Y (2020) Genome-wide analysis, characterization, and expression profile of the basic leucine zipper transcription factor family in pineapple. Int J Genom (2):1–14

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  CAS  Google Scholar 

  • Mallappa CA (2006) Basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:2190–2199

    Article  Google Scholar 

  •  Mirzaei K,  Bahramnejad B,  Fatemi S, (2020) Genome-wide identification and characterization of the bZIP gene family in potato (Solanum tuberosum). Plant Gene 24:100257

  • Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8(2):122–128

    Article  CAS  Google Scholar 

  • Murugesan P, Aswathy GM, Kumar SK, Masilamani P, Kumar V, Ravi V (2017) Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: a review. Ind J Agricul Sci 87(5):571–579

    CAS  Google Scholar 

  • Niggeweg R (2005) Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid and auxin-inducible expression of as-1-containing target promoters. J Biol Chem 275:19897–19905

    Article  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2007) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350. https://doi.org/10.1104/pp.107.112821

    Article  CAS  PubMed  Google Scholar 

  • Onodera Y, Suzuki A, Wu CY, Washida H, Takaiwa F (2001) A rice functional transcriptional activator, RISBZ1, responsible for endosperm-specific expression of storage protein genes through GCN4 motif. J Biol Chem 276:14139–14152

    Article  CAS  Google Scholar 

  • Si W, Hang T, Guo M, Chen Z, Liang Q, Gu L, Ding T (2019) Whole-genome and transposed duplication contributes to the expansion and diversification of TLC genes in maize. Int J Mol Sci 20(21):5484

    Article  CAS  Google Scholar 

  • Singh R, Ong-Abdullah M, Low E (2013) Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nat 500:335–339

    Article  CAS  Google Scholar 

  • Sornaraj P, Luang S, Lopato S, Hrmova M (2016) Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: a molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta 1860:46–56. https://doi.org/10.1016/j.bbagen.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    Article  CAS  Google Scholar 

  • Tani N, Abdul Hamid ZA, Joseph N (2020) Small temperature variations are a key regulator of reproductive growth and assimilate storage in oil palm (Elaeis guineensis). Sci Rep 10:650. https://doi.org/10.1038/s41598-019-57170-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C (2005) Tobacco bZIP transcription factor TGA2.2 and related factor TGA2. 1 have distinct roles in plant defense responses and plant development. Plant J 44(1):100–13

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X (2012) MCScan X: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nuc Acids Res 40:e49

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D (2018) Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PLoS One 13(7):e0200850

    Article  Google Scholar 

  • Wang Z, Yan LY, Wan LY, Huai DX, Kang YP, Shi L, Jiang HF, Lei Y, Liao BS (2019) Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genom 20:51. https://doi.org/10.1186/s12864-019-5434-6

    Article  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476. https://doi.org/10.1093/dnares/dss026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  Google Scholar 

  • Xiao Y, Zhou L, Lei X, Cao H, Wang Y, Dou Y (2017) Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis. PLoS One 12(12):e0189224

    Article  Google Scholar 

  • Yang O, Popova QV, Süthoff U, Lüking I, Dietz KJ, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  CAS  Google Scholar 

  • Yang QQ, Feng K, Xu ZS, Duan AQ, Liu JX, Xiong AS (2019a) Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery. Biotechnol Biotechnological Equip 33(1):707–718. https://doi.org/10.1080/13102818.2019.1611386

    Article  CAS  Google Scholar 

  • Yang Y, Li J, Li H, Yang Y, Guang Y, Zhou Y (2019b) The bZIP gene family in watermelon: genome-wide identification and expression analysis under cold stress and root-knot nematode infection. Peer J 7:e7878. https://doi.org/10.7717/peerj.7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZM, Sun J, Chen Y, Zhu PP, Zhang L, Wu SY, Ma DF, Cao QH, Li ZY, Xu T (2019c) Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida. BMC Genet 20:41. https://doi.org/10.1186/s12863-019-0743-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Gschwend AR, Ouyang Y, Long M (2014) Evolution of gene structural complexity: an alternative-splicing-based model accounts for intron-containing retrogenes. Plant Physiol 165(1):412–423

    Article  CAS  Google Scholar 

  • Zhang M, Liu Y, Shi H, Guo M, Chai M, He Q (2018) Evolutionary and expression analyses of soybean basic Leucine zipper transcription factor family. BMC Genom 19:159

    Article  Google Scholar 

  • Zhang Y, Gao W, Li H (2020) Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill.). BMC Genom 21:483. https://doi.org/10.1186/s12864-020-06890-7

    Article  CAS  Google Scholar 

  • Zhou Y, Xu D, Jia L, Huang X, Ma G, Wang S, Zhu M, Zhang A, Guan M, Lu K, Xu X, Wang R, Li J, Qu C (2017) Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus. Genes 8:288

    Article  Google Scholar 

  • Zhou L, Yarra R, Jin L, Cao H (2020) Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions. Environ Exp Bot 180:104245. https://doi.org/10.1016/j.envexpbot.2020.104245

    Article  CAS  Google Scholar 

Download references

Funding

This research project was financially supported by the Natural Science Foundation of China project (No. 31870670) and Central public-interest scientific institution basal research fund for the Chinese Academy of Tropical Agricultural Sciences (No. 1630152017008).

Author information

Authors and Affiliations

Authors

Contributions

LZ and RY conceived and designed the experiments. LZ and RY performed the experiments; LZ and RY validated the data; LZ and RY performed the formal analysis; RY participated in original draft preparation; LZ supervised the research.

Corresponding author

Correspondence to Lixia Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Bhumi Nath Tripathi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key message: A total of 97bZIP transcription factors were identified and explored their role in abiotic stress responses in oil palm

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yarra, R. Genome-wide identification and expression analysis of bZIP transcription factors in oil palm (Elaeis guineensis Jacq.) under abiotic stress. Protoplasma 259, 469–483 (2022). https://doi.org/10.1007/s00709-021-01666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-021-01666-6

Keywords

Navigation