Skip to main content
Log in

Improvement on mechanical and flame retardancy behaviour of bio-exfoliated graphene-filled epoxy/glass fibre composites using compression moulding approach

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Bio-reduction of composite materials is the modern approach to facilitate the researchers to avoid toxic chemical exposure during reduction process. In this study, the green reduction of graphene oxide using Abutilon indicum (Tamil name: Thuthi) plant leaves extracted from various solvents were used as green filler material (0.3, 0.6 and 1 wt.%) in glass fibre epoxy composite. Compression moulding process was adopted to fabricate bio-reduced graphene oxide (BGO) filler incorporated polymer matrix composite. Tensile, flexural, toughness, impact test and fracture surface morphology analysis have been conducted over developed composite. Flame retardancy behaviour was studied based on UL94 standard. Outcome of the study revealed that Abutilon indicum act as the better reducing agent to reduce graphene oxide. XRD, FTIR results depicts the proper distortion of graphite flask. Addition of BGO in polymer matrix improvises the tensile, flexural and impact strength of matrix material up to 28%, 55% and 80%. Herein addition of 0.6 wt.% of BGO showcase better fracture toughness and flexural strength, further increment in BGO show negative effect in strength. Occurrence of delamination failure was notified in fracture surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Saikrishnan G (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  2. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Khan A (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Ind Text. https://doi.org/10.1177/1528083720971344

    Article  Google Scholar 

  3. Han S, Meng Q, Qiu Z, Osman A, Cai R, Yu Y, Liu T, Araby S (2019) Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polym (Guildf) 184:121884

    Article  CAS  Google Scholar 

  4. Sumesh KR, Kanthavel K, Kavimani V (2020) Peanut oil cake-derived cellulose fiber: extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. Int J Biol Macromol 150:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118

    Article  CAS  PubMed  Google Scholar 

  5. Gulati K, Lal S, Kumar S, Arora S (2020) Effect of gamma irradiation on thermal, mechanical and water absorption behavior of LLDPE hybrid composites reinforced with date pit (Phoenix dactylifera) and glass fiber. Polym Bull. https://doi.org/10.1007/s00289-020-03477-w

  6. Karsli NG, Yilmaz T, Gul O (2018) Effects of coupling agent addition on the adhesive wear, frictional and thermal properties of glass fiber-reinforced polyamide 6, 6 composites. Polym Bull 75:4429–4444

    Article  CAS  Google Scholar 

  7. Chen C-H, Jian J-Y, Yen F-S (2020) Morphology, thermal, and mechanical properties of κ-aluminum oxide/CTBN/epoxy nanocomposites. Polym Bull 78:1–14

    Google Scholar 

  8. Kudus MHA, Zakaria MR, Othman MBH, Akil HM, Javed F (2020) Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach. Polym Bull 77:2385–2404

    Article  CAS  Google Scholar 

  9. Colak OU, Uzunsoy D, Bahlouli N, Francart C (2020) Experimental investigation of oligo cyclic compression behavior of pure epoxy and graphene-epoxy nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-020-03453-4

  10. Dewangan R, Asthana A, Singh AK, Carabineiro SAC (2020) Control of surface functionalization of graphene-metal oxide polymer nanocomposites prepared by a hydrothermal method. Polym Bull. https://doi.org/10.1007/s00289-020-03342-w

    Article  Google Scholar 

  11. Li S, Zhang J, Liu M, Wang R, Wu L (2020) Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite. Polym Bull. https://doi.org/10.1007/s00289-020-03439-2

    Article  Google Scholar 

  12. Kavimani V, Stalin B, Gopal PM, Ravichandran M, Karthick A, Bharani M (2021) Application of r-GO-MMT hybrid nanofillers for improving strength and flame retardancy of epoxy/glass fibre composites. Adv Polym Technol 2021:1–9

    Article  Google Scholar 

  13. Kavimani V, Prakash KS, Thankachan T (2019) Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy. Compos Part B Eng 162:508–521. https://doi.org/10.1016/j.compositesb.2019.01.009

    Article  CAS  Google Scholar 

  14. Kavimani V, Soorya Prakash K, Thankachan T, Udayakumar R (2020) Synergistic improvement of epoxy derived polymer composites reinforced with graphene oxide (GO) plus titanium di oxide(TiO2). Compos Part B Eng 191:107911. https://doi.org/10.1016/j.compositesb.2020.107911

    Article  CAS  Google Scholar 

  15. Kamar NT, Hossain MM, Khomenko A, Haq M, Drzal LT, Loos A (2015) Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos Part A Appl Sci Manuf 70:82–92

    Article  CAS  Google Scholar 

  16. Prusty RK, Ghosh SK, Rathore DK, Ray BC (2017) Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: an emphasis on graphene oxide content. Compos Part A Appl Sci Manuf 95:40–53

    Article  CAS  Google Scholar 

  17. Kunrath K, Kerche EF, Rezende MC, Amico SC (2019) Mechanical, electrical, and electromagnetic properties of hybrid graphene/glass fiber/epoxy composite. Polym Polym Compos 27:262–267

    CAS  Google Scholar 

  18. Liu S, Fang Z, Yan H, Chevali VS, Wang H (2016) Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos Part A Appl Sci Manuf 89:26–32

    Article  CAS  Google Scholar 

  19. Yu B, Shi Y, Yuan B, Qiu S, Xing W, Hu W, Song L, Lo S, Hu Y (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3:8034–8044

    Article  CAS  Google Scholar 

  20. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon N Y 50:5331–5339

    Article  CAS  Google Scholar 

  21. Zhang D, Liu X, Wang X (2011) Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J Inorg Biochem 105:1181–1186

    Article  CAS  Google Scholar 

  22. Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J, Roy SS (2017) Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Adv 7:26680–26688

    Article  CAS  Google Scholar 

  23. Mahata S, Sahu A, Shukla P, Rai A, Singh M, Rai VK (2018) The novel and efficient reduction of graphene oxide using ocimum sanctum L. leaf extract as an alternative renewable bio-resource. New J Chem 42:19945–19952

    Article  CAS  Google Scholar 

  24. Mohanta YK, Biswas K, Bandyopadhyay J, Tamang A, De D, Mohanta D, Panda SK, Jayabalan R, Mohanta TK, Bastia AK (2018) Abutilon indicum (L.) sweet leaf extracts assisted bio-inspired synthesis of electronically charged silver nano-particles with potential antimicrobial, antioxidant and cytotoxic properties. Mater Focus 7:94–100

    Article  CAS  Google Scholar 

  25. K V, Prakash S, Rajesh R, Rammasamy D, Selvaraj NB, Yang T, Prabakaran B, Jothi S (2017) Electrodeposition of r-GO/SiC nano-composites on magnesium and its corrosion behavior in aqueous electrolyte. Appl Surf Sci 424:63–71. https://doi.org/10.1016/j.apsusc.2017.02.082

    Article  CAS  Google Scholar 

  26. Biradar SR, Rachetti BD (2013) Extraction of some secondary metabolites & thin layer chromatography from different parts of centella asiatica L.(URB). Am J Life Sci 1:243–247

    Google Scholar 

  27. Yasmin S, Kashmiri MA, Asghar MN, Ahmad M, Mohy-ud-Din A (2010) Antioxidant potential and radical scavenging effects of various extracts from abutilon indicum and abutilon muticum. Pharm Biol 48:282–289

    Article  CAS  Google Scholar 

  28. Khan SA, Noreen F, Kanwal S, Iqbal A, Hussain G (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of abutilon indicum, Clerodendrum infortunatum, clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C 82:46–59

    Article  CAS  Google Scholar 

  29. Prathap M, Alagesan A, Kumari BDR (2014) Anti-bacterial activities of silver nanoparticles synthesized from plant leaf extract of abutilon indicum (L.) sweet. J Nanostructure Chem 4:106

    Article  Google Scholar 

  30. Bahrami A, Kazeminezhad I, Abdi Y (2019) Pt-Ni/rGO counter electrode: electrocatalytic activity for dye-sensitized solar cell. Superlattices Microstruct 125:125–137

    Article  CAS  Google Scholar 

  31. Qiao X, Liao S, You C, Chen R (2015) Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts 5:981–991

    Article  CAS  Google Scholar 

  32. Kumar A, Sadanandhan AM, Jain SL (2019) Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J Chem 43:9116–9122

    Article  CAS  Google Scholar 

  33. He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L (2015) Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv 5:11966–11972

    Article  CAS  Google Scholar 

  34. Habte AT, Ayele DW (2019) Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the tour method with different parameters. Adv Mater Sci Eng 2019:1–9

    Article  Google Scholar 

  35. Aswathnarayan MS, Muniraju M, Reddappa HN, Rudresh BM (2020) Synergistic effect of nano graphene on the mechanical behaviour of glass-epoxy polymer composites. Mater Today Proc 20:177–184

    Article  CAS  Google Scholar 

  36. Verma D, Gope PC, Shandilya A, Gupta A (2014) Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: a review. Trans Indian Inst Met 67:803–816

    Article  CAS  Google Scholar 

  37. Srivastava AK, Gupta V, Yerramalli CS, Singh A (2019) Flexural strength enhancement in carbon-fiber epoxy composites through graphene nano-platelets coating on fibers. Compos Part B Eng 179:107539

    Article  CAS  Google Scholar 

  38. Hung P, Lau K, Fox B, Hameed N, Jia B, Lee JH (2019) Effect of graphene oxide concentration on the flexural properties of CFRP at low temperature. Carbon N Y 152:556–564

    Article  CAS  Google Scholar 

  39. Gangineni PK, Yandrapu S, Ghosh SK, Anand A, Prusty RK, Ray BC (2019) Mechanical behavior of graphene decorated carbon fiber reinforced polymer composites: an assessment of the influence of functional groups. Compos Part A Appl Sci Manuf 122:36–44

    Article  CAS  Google Scholar 

  40. Toorchi D, Tohidlou E, Khosravi H (2020) Enhanced flexural and tribological properties of basalt fiber-epoxy composite using nano-zirconia/graphene oxide hybrid system. J Ind Text. https://doi.org/10.1177/1528083720920573

    Article  Google Scholar 

  41. Keshavarz R, Aghamohammadi H, Eslami-Farsani R (2020) The effect of graphene nanoplatelets on the flexural properties of fiber metal laminates under marine environmental conditions. Int J Adhes Adhes 103:102709

    Article  CAS  Google Scholar 

  42. Du S-S, Li F, Xiao H-M, Li Y-Q, Hu N, Fu S-Y (2016) Tensile and flexural properties of graphene oxide coated-short glass fiber reinforced polyethersulfone composites. Compos Part B Eng 99:407–415

    Article  CAS  Google Scholar 

  43. Anand A, Ghosh SK, Fulmali AO, Prusty RK (2021) Enhanced barrier, mechanical and viscoelastic properties of graphene oxide embedded glass fibre/epoxy composite for marine applications. Constr Build Mater 268:121784

    Article  CAS  Google Scholar 

  44. Jena A, Prusty RK, Ray BC (2020) Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass Fiber/Epoxy composites. Mater Today Proc 33:5184–5189

  45. Chaharmahali M, Hamzeh Y, Ebrahimi G, Ashori A, Ghasemi I (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337–349

    Article  CAS  Google Scholar 

  46. Abdullah SI, Ansari MNM (2015) Mechanical properties of graphene oxide (GO)/epoxy composites. Hbrc J 11:151–156

    Article  Google Scholar 

  47. Wang X, Song L, Yang H, Lu H, Hu Y (2011) Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly (butylene succinate) composites. Ind Eng Chem Res 50:5376–5383

    Article  CAS  Google Scholar 

  48. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56

    Article  CAS  Google Scholar 

  49. Chen W, Liu Y, Liu P, Xu C, Liu Y, Wang Q (2017) The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci Rep 7:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elanchezhian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavimani, V., Gopal, P.M., Sumesh, K.R. et al. Improvement on mechanical and flame retardancy behaviour of bio-exfoliated graphene-filled epoxy/glass fibre composites using compression moulding approach. Polym. Bull. 79, 6289–6307 (2022). https://doi.org/10.1007/s00289-021-03810-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03810-x

Keywords

Navigation