Skip to main content
Log in

Dibenzo-18-crown-6/Polyacrylonitrile (PAN) nanofibers for metal ions adsorption: adsorption studies for Na+ and K+

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Dibenzo-18-crown-6 (DB18C6) as a host compound was doped into polyacrylonitrile (PAN) solution. The composite nanofibers (DB18C6/PAN) were prepared by the electrospinning. The morphology, chemical structure and thermal stability of nanofibers were characterized by field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA), respectively. The composite nanofibers with good morphology were obtained by controlling the weight percent of DB18C6 and electrospinning parameters. The static adsorption behavior of alkali metal ions and alkaline earth metal ions of different proportional DB18C6/PAN nanofibers were studied. DB18C6/PAN nanofibers have adsorptive selectivity about alkali metal ions: K+  > Na+  >  > Cs+  > Li+. The 15wt%DB18C6/PAN nanofibers have the highest adsorption capacity. The adsorption kinetics of 15wt%DB18C6/PAN nanofibers for Na+ and K+ were accorded with the first-order equation, and the adsorption rate constants were 9.5 × 10–3 min−1 and 1.5 × 10–2 min−1, respectively. At 25 °C, the isotherm adsorption of the DB18C6/PAN nanofibers for Na+ and K+ was confirmed to the Langmuir adsorption isotherm, and the maximum adsorption quantities of 15wt%DB18C6/PAN nanofibers were 11.9 mg g−1 and 24.8 mg g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liao Y, Loh CH, Tian M, Wang R, Fane AG (2018) Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications. Prog Polym Sci 77:69–94

    Article  CAS  Google Scholar 

  2. Xue JJ, Xie JW, Liu WY, Xia YN (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gök ZG, Inal M, Bozkaya O, Yiğitoğlu M, Vargel I (2020) Production of 2-hydroxyethyl methacrylate-g-poly (ethylene terephthalate) nanofibers by electrospinning and evaluation of the properties of the obtained nanofibers. J Appl Polym Sci 137:e49257

    Article  Google Scholar 

  4. Bozkaya O, Günay K, Arslan M, Gök ZG (2021) Removal of anionic dyes with glycidyl methacrylate-grafted polyethylene terephthalate (PET) fibers modified with ethylenediamine. Res Chem Intermediat 47:2075–2093

    Article  CAS  Google Scholar 

  5. Günay K, Arslan M, Bozkaya O, Aluç Y, Gök ZG (2019) Elimination of carcinogenic bromate ions from aqueous environment with 4-vinyl pyridine-g-poly(ethylene terephthalate) fibers. Environ Sci Pollut R 26:31644–31653

    Article  Google Scholar 

  6. Ma WJ, Zhang MJ, Liu ZC, Kang MM, Huang CB, Fu GD (2019) Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation. J Membr Sci 570:303–313

    Article  Google Scholar 

  7. Zhang BA, Kang FY, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380

    Article  CAS  Google Scholar 

  8. Zhang CL, Lu BR, Cao FH, Wu ZY, Zhang W, Cong HP, Yu SH (2019) Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy 55:226–233

    Article  CAS  Google Scholar 

  9. Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Limh KHC, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44:790–814

    Article  CAS  PubMed  Google Scholar 

  10. Topuz F, Uyar T (2019) Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics 11:35

    Google Scholar 

  11. Uyar T, Havelund R, Hacaloglu J, Besenbacher F, Kingshott P (2010) Functional electrospun polystyrene nanofibers incorporating alpha-, beta-, and gamma-cyclodextrins: comparison of molecular filter performance. ACS Nano 4:5121–5130

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Chen M, Diao GW (2011) Electrospinning beta-cyclodextrin/poly(vinyl alcohol) nanofibrous membrane for molecular capture. Carbohydr Polym 86:1410–1416

    Article  CAS  Google Scholar 

  13. Celebioglu A, Uyar T (2012) Electrospinning of nanofibers from non-polymeric systems: polymer-free nanofibers from cyclodextrin derivatives. Nanoscale 4:621–631

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Chen M, Zha BB, Diao GW (2012) Correlation of polymer-like solution behaviors with electrospun fiber formation of hydroxypropyl-beta-cyclodextrin and the adsorption study on the fiber. Phys Chem Chem Phys 14:9729–9737

    Article  CAS  PubMed  Google Scholar 

  15. Chen ML, Nielsen SR, Uyar T, Zhang S, Zafar A, Dong MD, Besenbacher F (2013) Electrospun UV-responsive supramolecular nanofibers from a cyclodextrin-azobenzene inclusion complex. J Mater Chem C 1:850–855

    Article  CAS  Google Scholar 

  16. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Keskin NOS, Kusku SI, Durgun E, Tekinay T, Uyar T (2016) Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64:7325–7334

    Article  CAS  PubMed  Google Scholar 

  17. Celebioglu A, Yildiz ZI, Uyar T (2018) Thymol/cyclodextrin inclusion complex nanofibrous webs: enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 106:280–290

    Article  CAS  PubMed  Google Scholar 

  18. Chen M, Wang CJ, Fang W, Wang J, Zhang W, Jin G, Diao GW (2013) Electrospinning of calixarene-functionalized polyacrylonitrile nanofiber membranes and application as an adsorbent and catalyst support. Langmuir 29:11858–11867

    Article  CAS  PubMed  Google Scholar 

  19. Bayrakci M, Ozcan F, Ertul S (2015) Synthesis of calixamide nanofibers by electrospinning and toxic anion binding to the fiber structures. Tetrahedron 71:3404–3410

    Article  CAS  Google Scholar 

  20. Rodriguez JD, Vaden TD, Lisy JM (2009) Infrared spectroscopy of ionophore-model systems: hydrated alkali metal ion 18-crown-6 ether complexes. J Am Chem Soc 131:17277–17285

    Article  CAS  PubMed  Google Scholar 

  21. Boda A, Ali SM, Shenoi MRK, Rao H, Ghosh SK (2011) DFT modeling on the suitable crown ether architecture for complexation with Cs+ and Sr2+ metal ions. J Mol Model 17:1091–1108

    Article  CAS  PubMed  Google Scholar 

  22. Torrejos REC, Nisola GM, Song HS, Limjuco LA, Lawagon CP, Parohinog KJ, Koo S, Han JW, Chung WJ (2017) Design of lithium selective crown ethers: synthesis, extraction and theoretical binding studies. Chem Eng J 326:921–933

    Article  CAS  Google Scholar 

  23. Atta NF, Galal A, Ahmed YM (2019) Highly conductive crown ether/ionic liquid crystal-carbon nanotubes composite based electrochemical sensor for chiral recognition of tyrosine enantiomers. J Electrochem Soc 166:B623–B630

    Article  Google Scholar 

  24. Huang Y, Wang R (2018) An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water. J Clean Prod 205:201–209

    Article  CAS  Google Scholar 

  25. Mihandoost G, Zahedi MM, Ziyaadini M (2019) Transport of K+ from Seawater Using Dibenzo-18-crown-6 via Carbon Nanotube Based Pseudo Supported Liquid Membrane. Anal Bioanal Chem Res 6:241–251

    Google Scholar 

  26. Pan LT, Zhai GZ, Yang XR, Yu HR, Cheng CJ (2019) Thermosensitive microgels-decorated magnetic graphene oxides for specific recognition and adsorption of Pb(II) from aqueous solution. ACS Omega 4:3933–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nisola GM, Parohinog KJ, Cho MK, Burnea FKB, Lee JY, Seo JG, Lee SP, Chung WJ (2020) Covalently decorated crown ethers on magnetic graphene oxides as bi-functional adsorbents with tailorable ion recognition properties for selective metal ion capture in water. Chem Eng J 389:12

    Article  Google Scholar 

  28. Zhang EH, Liu WF, Liang Q, Liu XG, Zhao ZB, Yang YZ (2020) Selective recovery of Li+ in acidic environment based on one novel electroactive Li+-imprinted graphene-based hybrid aerogel. Chem Eng J 385:13

    Article  Google Scholar 

  29. Liu Z, Zhou YQ, Guo M, Lv BL, Wu ZJ, Zhou WZ (2019) Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J Hazard Mater 371:712–720

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim BM, Fakhre NA (2019) Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater. Int J Biol Macromol 123:70–80

    Article  CAS  PubMed  Google Scholar 

  31. Buriac O, Ciopec M, Duteanu N, Negrea A, Negrea P, Grozav I (2020) Platinum (IV) recovery from waste solutions by adsorption onto dibenzo-30-crown-10 ether immobilized on amberlite XAD7 resin-factorial design analysis. Molecules 25:23

    Article  Google Scholar 

  32. Deb AKS, Sahu P, Boda A, Ali SM, Shenoy KT, Upadhyay D (2020) DFT and MD simulation supplemented experiments for isotopic fractionation of zinc compounds using a macrocyclic crown ether appended polymeric resin. Phys Chem Chem Phys 22:14682–14693

    Article  Google Scholar 

  33. Limjuco LA, Nisola GM, Torrejos REC, Han JW, Song HS, Parohinog KJ, Koo S, Lee SP, Chung WJ (2017) Aerosol cross-linked crown ether diols melded with poly(vinyl alcohol) as specialized microfibrous Li+ adsorbents. ACS Appl Mater Interfaces 9:42862–42874

    Article  CAS  PubMed  Google Scholar 

  34. Chen LQ, Zhu XH, Huang DN, Xu Z, Shen J, Zhang WQ (2017) Polystyrene/poly(dibenzo-18-crown-6) composite nanofibers for the selective adsorption of plasma catecholamines. RSC Adv 7:13263–13271

    Article  CAS  Google Scholar 

  35. Tas S, Kaynan O, Ozden-Yenigun E, Nijmeijer K (2016) Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations. RSC Adv 6:3608–3616

    Article  CAS  Google Scholar 

  36. Nisola GM, Parohinog KJ, Torrejos REC, Koo S, Lee SP, Kim H, Chung WJ (2020) Crown ethers “clicked” on fibrous polyglycidyl methacrylate for selective Li+ retrieval from aqueous sources. Colloid Surf A-Physicochem Eng Asp 596:13

    Article  Google Scholar 

  37. Chen M, Chen Y, Diao GW (2010) Adsorption kinetics and thermodynamics of methylene blue onto p-tert-butyl-calix 4,6,8 arene-bonded silica gel. J Chem Eng Data 55:5109–5116

    Article  CAS  Google Scholar 

  38. Jia SY, Tang DY, Peng J, Yang X, Sun ZJ (2020) Crosslinked electrospinning fibers with tunable swelling behaviors: A novel and effective adsorbent for Methylene Blue. Chem Eng J 390:13

    Google Scholar 

  39. Papaphilippou PC, Karamanis P, Stavrinou K, Krasia-Christoforou T (2020) Functionalized electrospun fibrous membranes as effective adsorbents for benzoic acid from aqueous media. ChemistrySelect 5:9017–9021

    Article  CAS  Google Scholar 

  40. Chen M, Cui L, Li CH, Diao GW (2009) Adsorption, desorption and condensation of nitrobenzene solution from active carbon: A comparison of two cyclodextrins and two surfactants. J Hazard Mater 162:23–28

    Article  CAS  PubMed  Google Scholar 

  41. Chen M, Shang T, Fang W, Diao GW (2011) Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix n arene for butyl Rhodamine B solution. J Hazard Mater 185:914–921

    Article  CAS  PubMed  Google Scholar 

  42. Chen M, Ding WH, Wang J, Diao GW (2013) Removal of Azo dyes from water by combined techniques of adsorption, desorption, and electrolysis based on a supramolecular sorbent. Ind Eng Chem Res 52:2403–2411

    Article  CAS  Google Scholar 

  43. Surgutskaia NS, Di Martino A, Zednik J, Ozaltin K, Lovecka L, Bergerova ED, Kimmer D, Svoboda J, Sedlarik V (2020) Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Sep Purif Technol 247:12

    Article  Google Scholar 

  44. Yu JY, Hu TJ, Du C, Zhang Y, Chu ZY, Li YH, Cao J (2020) Facile synthesis of a BCN nanofiber and its ultrafast adsorption performance. RSC Adv 10:25200–25208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang XX, Li ZW, Lin SJ, Theato P (2020) Fibrous materials based on polymeric salicyl active esters as efficient adsorbents for selective removal of anionic dye. ACS Appl Mater Interfaces 12:21100–21113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The funding support from the “Qinglan project” of Jiangsu Province (2018-12) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiaofang Shi, Rongguan Lv or Ming Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Wang, J., Qian, C. et al. Dibenzo-18-crown-6/Polyacrylonitrile (PAN) nanofibers for metal ions adsorption: adsorption studies for Na+ and K+. Polym. Bull. 79, 6275–6288 (2022). https://doi.org/10.1007/s00289-021-03806-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03806-7

Keywords

Navigation