Skip to main content

Advertisement

Log in

Insights into bulk stable isotope alteration during sediment redistribution to edge-of-field: impact on sediment source apportionment

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Organic tracers (bulk δ13C and δ15N) are being increasingly used in sediment/particulate organic carbon source apportionment studies at the catchment scale to support sustainable land management decisions. Here, the use of these isotopic tracers in sediment fingerprinting depends on the critical assumption that δ13C and δ15N values remain conservative during the sediment delivery continuum. Such assumption, however, requires critical evaluation, especially since standard tracer conservation tests applied in conjunction with catchment scale studies are prone to masking potential issues at smaller spatial scales including the field scale. Against this background, our study evaluated the subtle isotopic shift associated with sediment redistribution to edge-of-field and assessed the impact on sediment source apportionment. In a C3-grass dominated study field, δ13C and δ15N values exhibited differences (i.e., Δ13C = 1.4 ± 0.7‰ and Δ15N = 0.4 ± 0.4‰) between soil depths of 0–5 cm and 5–10 cm. Sampled sediments at the edge-of-field flume had higher δ13C values than the 0–5 cm soil layer; i.e., Δ13C values were 0.3 ± 0.4‰ and 0.8 ± 0.4‰ for suspended and deposited (materials deposited in a basket downstream of a flume) sediment, respectively. In contrast, δ15N values increased in suspended (Δ15N = 0. 8 ± 0.6‰) but decreased (Δ15N = − 0.4 ± 0.5‰) in deposited sediment, compared to the 0–5 cm soil layer, suggesting that the N isotopes can respond differently in edge-of-field sediment types. Although current fingerprinting work tends to not take explicit account of organic tracer alteration during transport or after deposition, our results demonstrate that correcting sediment δ13C and δ 15N values for tracer alteration in a Bayesian un-mixing model generated robust and reliable estimates of source contributions to both target sediment types. We therefore recommend taking account of the subtle but consistently altered δ13C and δ 15N values along the sediment cascade in un-mixing modelling to help better discriminate sources and to improve un-mixing model estimates at the catchment scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Acornley RM, Sear DA (1999) Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams. Hydrol Process 13(3):447–458

    Article  Google Scholar 

  • Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res (G Biogeosci) 118(4):1532–1545

    Article  Google Scholar 

  • Amelung W, Bol R, Friedrich C (1999) Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions. Rapid Commun Mass Spectrom 13(13):1291–1294

    Article  Google Scholar 

  • Appel T (1998) Non-biomass soil organic N—the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biol Biochem 30(10–11):1445–1456

    Article  Google Scholar 

  • Baisden WT, Amundson R, Brenner DL, Cook AC, Kendall C, Harden JW (2002) A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Glob Biogeochem Cycles 16(4):1135

    Article  Google Scholar 

  • Bellanger B, Huon S, Velasquez F, Valles V, Girardin C, Mariotti A (2004) Monitoring soil organic carbon erosion with δ13C and δ15N on experimental field plots in the Venezuelan Andes. Catena 58(2):125–150

    Article  Google Scholar 

  • Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329(6141):708–710

    Article  Google Scholar 

  • Berhe AA, Torn MS (2017) Erosional redistribution of topsoil controls soil nitrogen dynamics. Biogeochemistry 132:37–54

    Article  Google Scholar 

  • Bianchi TS, Canuel EA (2011) Chemical biomarkers in aquatic ecosystems. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21(4):1017–1023

    Article  Google Scholar 

  • Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15(4):808–824

    Article  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153(1):89–98

    Article  Google Scholar 

  • Bouillon S, Connolly RM, Gillikin DP (2011) Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science. Academic Press, Waltham, pp 143–173

    Chapter  Google Scholar 

  • Collins AL, Williams LJ, Zhang YS, Marius M, Dungait JAJ, Smallman DJ, Dixon ER, Stringfellow A, Sear DA, Jones JI, Naden PS (2013) Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Sci Total Environ 456:181–195

    Article  Google Scholar 

  • Collins AL, Williams LJ, Zhang YS, Marius M, Dungait JAJ, Smallman DJ, Dixon ER, Stringfellow A, Sear DA, Jones JI, Naden PS (2014) Sources of sediment-bound organic matter infiltrating spawning gravels during the incubation and emergence life stages of salmonids. Agric Ecosyst Environ 196:76–93

    Article  Google Scholar 

  • Collins AL, Pulley S, Foster IDL, Gellis A, Porto P, Horowitz AJ (2017) Sediment source fingerprinting as an aid to catchment management: a review of the current state of knowledge and a methodological decision-tree for end-users. J Environ Manag 194:86–108

    Article  Google Scholar 

  • Collins AL, Burak E, Harris P, Pulley S, Cardenas L, Tang Q (2019) Field scale temporal and spatial variability of δ13C, δ15N, TC and TN soil properties: implications for sediment source tracing. Geoderma 333:108–122

    Article  Google Scholar 

  • Collins AL, Blackwell M, Boeckx P, Chivers C-A, Emelko M, Evrard O, Foster I, Gellis A, Gholami H, Granger S, Harris P, Horowitz AJ, Laceby JP, Martinez-Carreras N, Minella J, Mol L, Nosrati K, Pulley S, Silins U, da Silva YJ, Stone M, Tiecher T, Upadhayay HR, Zhang Y (2020) Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. J Soils Sediments 20(12):4160–4193

    Article  Google Scholar 

  • Cooper RJ, Krueger T, Hiscock KM, Rawlins BG (2014) Sensitivity of fluvial sediment source apportionment to mixing model assumptions: a Bayesian model comparison. Water Resour Res 50(11):9031–9047

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Penuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183(4):980–992

    Article  Google Scholar 

  • Cui XQ, Bianchi TS, Hutchings JA, Savage C, Curtis JH (2016) Partitioning of organic carbon among density fractions in surface sediments of Fiordland, New Zealand. J Geophys Res (G Biogeosci) 121(3):1016–1031

    Article  Google Scholar 

  • DEFRA (2010) The fertilizer manual (RB209), 8th edn. Department for Environment, Food and Rural Affairs. The Stationary Office, Norwich, UK

    Google Scholar 

  • de Nijs EA, Cammeraat ELH (2020) The stability and fate of soil organic carbon during the transport phase of soil erosion. Earth Sci Rev 201:103067

    Article  Google Scholar 

  • Dijkstra P, Ishizu A, Doucett R, Hart SC, Schwartz E, Menyailo OV, Hungate BA (2006) 13C and 15N natural abundance of the soil microbial biomass. Soil Biol Biochem 38(11):3257–3266

    Article  Google Scholar 

  • Diochon A, Kellman L (2008) Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance. Geophys Res Lett 35(14): L14402

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10(2):412–422

    Article  Google Scholar 

  • Fabian J, Zlatanović S, Mutz M, Grossart H-P, van Geldern R, Ulrich A, Gleixner G, Premke K (2018) Environmental control on microbial turnover of leaf carbon in streams—ecological function of phototrophic-heterotrophic interactions. Front Microbiol 9:1044

    Article  Google Scholar 

  • Ford WI, Fox JF (2015) Isotope-based Fluvial Organic Carbon (ISOFLOC) model: model formulation, sensitivity, and evaluation. Water Resour Res 51(6):4046–4064

    Article  Google Scholar 

  • Ford WI, Fox JF, Mahoney DT, DeGraves G, Erhardt A, Yost S (2020) Backwater confluences of the Ohio river: organic and inorganic fingerprints explain sediment dynamics in wetlands and marinas. J Am Water Resour Assoc 56(4):692–711

    Article  Google Scholar 

  • Foster IDL, Lees JA (2000) Tracers in geomorphology: theory and applications in tracing fine particulate sediments. In: Foster IDL (ed) Tracers in geomorphology. Wiley, New York, pp 3–20

    Google Scholar 

  • Fox JF, Papanicolaou AN (2007) The use of carbon and nitrogen isotopes to study watershed erosion processes. J Am Water Resour Assoc 43(4):1047–1064

    Article  Google Scholar 

  • Fox JF, Martin DK (2015) Sediment fingerprinting for calibrating a soil erosion and sediment-yield model in mixed land-use watersheds. J Hydrol Eng 20(6):C4014002

    Article  Google Scholar 

  • Garten CT, Hanson PJ, Todd DE, Lu BB, Brice DJ (2007) Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Publishing, Oxford, pp 61–82

    Chapter  Google Scholar 

  • Glibert PM, Middelburg JJ, McClelland JW, Jake Vander Zanden M (2019) Stable isotope tracers: enriching our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems. Limnol Oceanogr 64:950–981

    Article  Google Scholar 

  • Gomes TF, Van de Broek M, Govers G, Silva RWC, Moraes JM, Camargo PB, Mazzi EA, Martinelli LA (2019) Runoff, soil loss, and sources of particulate organic carbon delivered to streams by sugarcane and riparian areas: an isotopic approach. Catena 181:104083

    Article  Google Scholar 

  • Gomez R, Arce MI, Sanchez JJ, Sanchez-Montoya MD (2012) The effects of drying on sediment nitrogen content in a Mediterranean intermittent stream: a microcosms study. Hydrobiologia 679(1):43–59

    Article  Google Scholar 

  • Guan Z, Tang XY, Yang JE, Ok YS, Xu ZH, Nishimura T, Reid BJ (2017) A review of source tracking techniques for fine sediment within a catchment. Environ Geochem Health 39(6):1221–1243

    Article  Google Scholar 

  • Harrod TR, Hogan DV (2008) The soils of Noth Wyke and Rowden. Soil survey of England and Wales. pp 1–54

  • Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochemistry 95(2–3):355–371

    Article  Google Scholar 

  • Hobbie EA, Hogberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196(2):367–382

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118(3):353–360

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  Google Scholar 

  • Hu YX, Berhe AA, Fogel ML, Heckrath GJ, Kuhn NJ (2016) Transport-distance specific SOC distribution: does it skew erosion induced C fluxes? Biogeochemistry 128(3):339–351

    Article  Google Scholar 

  • Jacinthe PA, Lal R, Owens LB, Hothem DL (2004) Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res 77(2):111–123

    Article  Google Scholar 

  • Jensen A, Ford W, Fox J, Husic A (2018) Improving in-stream nutrient routines in water quality models using stable isotope tracers: a review and synthesis. Trans ASABE 61(1):139–157

    Article  Google Scholar 

  • Kahmen A, Wanek W, Buchmann N (2008) Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156(4):861–870

    Article  Google Scholar 

  • Kirkels FMSA, Cammeraat LH, Kuhn NJ (2014) The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes—a review of different concepts. Geomorphology 226:94–105

    Article  Google Scholar 

  • Koiter AJ, Owens PN, Petticrew EL, Lobb DA (2013) The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth Sci Rev 125:24–42

    Article  Google Scholar 

  • Laceby JP, Olley J, Pietsch TJ, Sheldon F, Bunn SE (2015) Identifying subsoil sediment sources with carbon and nitrogen stable isotope ratios. Hydrol Process 29(8):1956–1971

    Article  Google Scholar 

  • Laceby JP, Evrard O, Smith HG, Blake WH, Olley JM, Minella JPG, Owens PN (2017) The challenges and opportunities of addressing particle size effects in sediment source fingerprinting: a review. Earth Sci Rev 169:85–103

    Article  Google Scholar 

  • Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA (2002) Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66(20):3573–3584

    Article  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 25(11):3578–3590

    Article  Google Scholar 

  • Li Y, Liu Y, Harris P, Sint H, Murray PJ, Lee MRF, Wu L (2017) Assessment of soil water, carbon and nitrogen cycling in reseeded grassland on the North Wyke Farm Platform using a process-based model. Sci Total Environ 603–604:27–37

    Article  Google Scholar 

  • Liu X, Hilfert L, Barth JAC, van Geldem R, Friese K (2020) Isotope alteration caused by changes in biochemical composition of sedimentary organic matter. Biogeochemistry 147(3):277–292

    Article  Google Scholar 

  • Mahoney DT, Al Aamery N, Fox JF, Riddle B, Ford W, Wang YT (2019) Equilibrium sediment exchange in the earth’s critical zone: evidence from sediment fingerprinting with stable isotopes and watershed modeling. J Soils Sediments 19:3332–3356

    Article  Google Scholar 

  • Martinez-Carreras N, Gallart F, Iffly J, Pfister L, Walling D, Krein A (2008) Uncertainty assessment in suspended sediment fingerprinting based on tracer mixing models: a case study from Luxembourg. In: Schmidt J, Cochrane T, Phillips T, Elliot C, Davies T, Basher L (eds) Sediment dynamics in changing environments. IAHS publication 325, IAHS Press, Wallingford, pp 94–105

    Google Scholar 

  • Martínez-Mena M, Almagro M, García-Franco N, de Vente J, García E, Boix-Fayos C (2019) Fluvial sedimentary deposits as carbon sinks: organic carbon pools and stabilization mechanisms across a Mediterranean catchment. Biogeosciences 16:1035–1051

    Article  Google Scholar 

  • McCarney-Castle K, Childress TM, Heaton CR (2017) Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina. J Environ Manag 185:60–69

    Article  Google Scholar 

  • McElreath R (2016) Statistical rethinking: a Bayesian course with examples in R and Stan. CRC Press, Boca Raton

    Google Scholar 

  • McPherson MR, Wang P, Marsh EL, Mitchell RB, Schachtman DP (2018) Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. JoVE 137:e57932

    Google Scholar 

  • Mobius J (2013) Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim Cosmochim Acta 105:422–432

    Article  Google Scholar 

  • Nagel B, Gaye B, Kodina LA, Lahajnar N (2009) Stable carbon and nitrogen isotopes as indicators for organic matter sources in the Kara Sea. Mar Geol 266(1–4):42–51

    Article  Google Scholar 

  • Nikolenko O, Jurado A, Borges AV, Knöller K, Brouyère S (2018) Isotopic composition of nitrogen species in groundwater under agricultural areas: a review. Sci Total Environ 621:1415–1432

    Article  Google Scholar 

  • Ohkouchi N, Ogawa NO, Chikaraishi Y, Tanaka H, Wada E (2015) Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies. Prog Earth Planet Sci 2:1

    Article  Google Scholar 

  • Orr RJ, Murray PJ, Eyles CJ, Blackwell MSA, Cardenas LM, Collins AL, Dungait JAJ, Goulding KWT, Griffith BA, Gurr SJ, Harris P, Hawkins JMB, Misselbrook TH, Rawlings C, Shepherd A, Sint H, Takahashi T, Tozer KN, Whitmore AP, Wu L, Lee MRF (2016) The North Wyke Farm Platform: effect of temperate grassland farming systems on soil moisture contents, runoff and associated water quality dynamics. Eur J Soil Sci 67(4):374–385

    Article  Google Scholar 

  • Phillips JM, Russell MA, Walling DE (2000) Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol Process 14(14):2589–2602

    Article  Google Scholar 

  • Pörtl K, Zechmeister-Boltenstern S, Wanek W, Ambus P, Berger TW (2007) Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295(1):79–94

    Article  Google Scholar 

  • R Core Team (2018) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Robinson D (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Article  Google Scholar 

  • Robinson RS, Kienast M, Luiza Albuquerque A, Altabet M, Contreras S, De Pol Holz R, Dubois N, Francois R, Galbraith E, Hsu T-C, Ivanochko T, Jaccard S, Kao S-J, Kiefer T, Kienast S, Lehmann M, Martinez P, McCarthy M, Möbius J, Pedersen T, Quan TM, Ryabenko E, Schmittner A, Schneider R, Schneider-Mor A, Shigemitsu M, Sinclair D, Somes C, Studer A, Thunell R, Yang J-Y (2012) A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27(4):PA4203

    Article  Google Scholar 

  • Sánchez-Carrillo S, Álvarez-Cobelas M (2018) Stable isotopes as tracers in aquatic ecosystems. Environ Rev 26(1):69–81

    Article  Google Scholar 

  • Schindler Wildhaber Y, Michel C, Burkhardt-Holm P, Baenninger D, Alewell C (2012) Measurement of spatial and temporal fine sediment dynamics in a small river. Hydrol Earth Syst Sci 16(5):1501–1515

    Article  Google Scholar 

  • Schmidt MWI, Gleixner G (2005) Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acid. Eur J Soil Sci 56(3):407–416

    Article  Google Scholar 

  • Sherriff SC, Franks SW, Rowan JS, Fenton O, O’HUallachain D (2015) Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data. J Soils Sediments 15(10):2101–2116

    Article  Google Scholar 

  • Shumilova O, Zak D, Datry T, von Schiller D, Corti R, Foulquier A, Obrador B, Tockner K, Allan DC, Altermatt F, Arce MI, Arnon S, Banas D, Banegas-Medina A, Beller E, Blanchette ML, Blanco-Libreros JF, Blessing J, Boëchat IG, Boersma K, Bogan MT, Bonada N, Bond NR, Brintrup K, Bruder A, Burrows R, Cancellario T, Carlson SM, Cauvy-Fraunié S, Cid N, Danger M, de Freitas TB, Girolamo AMD, del Campo R, Dyer F, Elosegi A, Faye E, Febria C, Figueroa R, Four B, Gessner MO, Gnohossou P, Cerezo RG, Gomez-Gener L, Graça MAS, Guareschi S, Gücker B, Hwan JL, Kubheka S, Langhans SD, Leigh C, Little CJ, Lorenz S, Marshall J, McIntosh A, Mendoza-Lera C, Meyer EI, Miliša M, Mlambo MC, Moleón M, Negus P, Niyogi D, Papatheodoulou A, Pardo I, Paril P, Pešić V, Rodriguez-Lozano P, Rolls RJ, Sanchez-Montoya MM, Savić A, Steward A, Stubbington R, Taleb A, Vorste RV, Waltham N, Zoppini A, Zarfl C (2019) Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter. Glob Chang Biol 25(5):1591–1611

    Article  Google Scholar 

  • Silfer JA, Engel MH, Macko SA (1992) Kinetic fractionation of stable carbon and nitrogen isotopes during peptide-bond hydrolysis: experimental-evidence and geochemical implications. Chem Geol 101(3–4):211–221

    Google Scholar 

  • Stock BC, Semmens BX (2016) Unifying error structures in commonly used biotracer mixing models. Ecology 97(10):2562–2569

    Article  Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. Peerj 6:e5096

    Article  Google Scholar 

  • Szpak P (2014) Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front Plant Sci 5:00288

    Article  Google Scholar 

  • Upadhayay HR, Bodé S, Griepentrog M, Bajracharya RM, Blake W, Cornelis W, Boeckx P (2018a) Isotope mixing models require individual isotopic tracer content for correct quantification of sediment source contributions. Hydrol Process 32(7):981–989

    Article  Google Scholar 

  • Upadhayay HR, Smith HG, Griepentrog M, Bode S, Bajracharya RM, Blake W, Cornelis W, Boeckx P (2018b) Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: a compound-specific stable isotope analysis. Sci Total Environ 637:306–317

    Article  Google Scholar 

  • Upadhayay HR, Lamichhane S, Bajracharya RM, Cornelis W, Collins AL, Boeckx P (2020) Sensitivity of source apportionment predicted by a Bayesian tracer mixing model to the inclusion of a sediment connectivity index as an informative prior: illustration using the Kharka catchment (Nepal). Sci Total Environ 713:136703

    Article  Google Scholar 

  • Wang C, Houlton BZ, Liu D, Hou J, Cheng W, Bai E (2018) Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 15(4):987–995

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wilkinson SN, Hancock GJ, Bartley R, Hawdon AA, Keen RJ (2013) Using sediment tracing to assess processes and spatial patterns of erosion in grazed rangelands, Burdekin River basin, Australia. Agric Ecosyst Environ 180:90–102

    Article  Google Scholar 

  • Wynn JG, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131(1–2):89–109

    Article  Google Scholar 

  • Xiao H, Li Z, Chang X, Huang B, Nie X, Liu C, Liu L, Wang D, Jiang J (2018) The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma 329:73–81

    Article  Google Scholar 

Download references

Acknowledgements

The North Wyke Farm Platform UK National Capability is funded by the UKRI (UK Research and Innovation) Biotechnology and Biological Sciences Research Council (BBSRC) via Grant Award BBS/E/C/000J010. The work in this paper was undertaken as part of the UKRI-BBSRC funded institute strategic programme Soil to Nutrition (S2N) via Grant BBS/E/C/000I0330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ram Upadhayay.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial or personal interests that can influence the data and interpretation of this paper.

Additional information

Responsible Editor: Sharon A. Billings.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhayay, H.R., Granger, S.J., Zhang, Y. et al. Insights into bulk stable isotope alteration during sediment redistribution to edge-of-field: impact on sediment source apportionment. Biogeochemistry 155, 263–281 (2021). https://doi.org/10.1007/s10533-021-00825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-021-00825-4

Keywords

Navigation