Skip to main content
Log in

On the Altitude Dependence of Aerosol Volume Scattering Coefficient in the Saturn’s Atmosphere. I. Integral Disk

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

Current studies dealing with the vertical structure, composition, and microphysical characteristics of the aerosol component in the atmosphere of Saturn are reviewed. When considering the methods used in the model analysis of giant planets atmospheres, the disadvantages of forcibly assigning the number of aerosol layers and their parameters that are artificially included into the model of the vertical structure of the atmosphere are pointed out. At the same time, the advantages of the effective optical depth (EOD) method are considered. This method makes it possible to determine a qualitative pattern of the altitude distribution of cloud layers in the giant planets atmospheres and to calculate a set of microphysical parameters of their aerosol component, while no particular vertical structure is preliminary assigned to the model. The EOD method is used to determine the pressure dependence of aerosol volume scattering coefficient in the upper atmosphere of Saturn from the reflectance spectra of its integral disk measured in the methane absorption bands at 619, 727, 842, 864, and 887 nm. The model assumptions, the quantitative relationships between the main atmospheric gases, and the size distribution parameters of aerosol particles are described. It has been found that aerosols with varying scattering properties are continuously present at all of the examined altitude levels in Saturn’s atmosphere. The altitudes at which the aerosol layers become densest were determined. In the atmosphere of the planet, the most powerful cloud system exhibits two maxima in the volume-scattering coefficient at levels of approximately 270 and 430 mbar and an intermediate thickening at approximately 1.0 bar. In a pressure range of 2.2−8.0 bar, there is an extended aerosol layer, where the scattering is strongest in a pressure interval of 3.8−4.8 bar depending on the methane absorption band analyzed. The significant dispersion differences, which were revealed in the composite dependence of the aerosol volume scattering coefficient, may indicate changes in the radius and/or nature of aerosol particles in the lower layers of Saturn’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. V. Morozhenko, Methods and Results of Remote Sensing of Planetary Atmospheres (Naukova Dumka, Kyiv, 2004) [in Ukrainian].

    Google Scholar 

  2. S. K. Atreya, M. H. Wonga, T. C. Owen, P. R. Mahaffy, H. B. Niemann, I. de Pater, P. Drossart, and Th. Encrenaz, “A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin,” Planet. Space Sci. 47, 1243–1262 (1999).

    Article  ADS  Google Scholar 

  3. O. I. Bugaenko, Zh. M. Dlugach, A. V. Morozhenko, and E. G. Yanovitskij, “On optical properties of the cloud layer of Saturn in the visible region of the spectrum,” Sol. Syst. Res. 9, 13–21 (1975).

    ADS  Google Scholar 

  4. O. I. Bugaenko and A. V. Morozhenko, “Physical characteristics of the upper layers of Saturn’s atmosphere,” Adv. Space Res. 1, 183–186 (1981).

    Article  ADS  Google Scholar 

  5. J. W. Chamberlain, “The atmosphere of Venus near cloud top,” Astrophys. J. 141, 1184–1205 (1965).

    Article  ADS  Google Scholar 

  6. R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel, “The composition of Saturn’s atmosphere at Northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio,” Astrophys. J. 287, 899–916 (1984).

    Article  ADS  Google Scholar 

  7. Z. M. Dlugach, A. V. Morozhenko, A. P. Vid’machenko, and E. G. Yanovitskij, “Investigations of the optical properties of Saturn’s atmosphere carried out at the main astronomical observatory of the Ukrainian Academy of Sciences,” Icarus 54, 319–336 (1983).

    Article  ADS  Google Scholar 

  8. L. N. Fletcher, K. H. Baines, T. W. Momary, A. P. Showman, P. G. J. Irwin, G. S. Orton, M. Roos-Serote, and C. Merlet, “Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6—5.1 μm nightside spectroscopy,” Icarus 214, 510–533 (2011).

    Article  ADS  Google Scholar 

  9. L. N. Fletcher, S. Guerlet, G. S. Orton, R. G. Cosentino, T. Fouchet, P. G. J. Irwin, L. Li, F. M. Flasar, N. Gorius, and R. Morales-Juberías, “Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm,” Nature Astron. 1, 765–770 (2017).

    Article  ADS  Google Scholar 

  10. L. N. Fletcher, G. S. Orton, N. A. Teanby, P. G. J. Irwin, and G. L. Bjoraker, “Methane and its isotopologues on Saturn from Cassini/CIRS observations,” Icarus 199, 351–167 (2009).

    Article  ADS  Google Scholar 

  11. L. P. Giver, “Intensity measurements of the CH4 bands in the region 4350 Å to 10 600 Å,” J. Quant. Spectrosc. Radiat. Transfer 19, 311–322 (1978).

    Article  ADS  Google Scholar 

  12. E. Karkoschka, “Spectrophotometry of the Jovian planets and Titan at 300 to 1000 nm wavelength: The methane spectrum,” Icarus 111, 967–982 (1994).

    Article  Google Scholar 

  13. K. Kawata, “Circular polarization of sunlight reflected by planetary atmosphere,” Icarus 33, 217–233 (1978).

    Article  ADS  Google Scholar 

  14. T. T. Koskinen and S. Guerlet, “Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations,” Icarus 307, 161–171 (2018).

    Article  ADS  Google Scholar 

  15. G. F. Lindal, “The atmosphere of Neptune: An analysis of radio occultation data with Voyager 2,” Astron. J. 103, 967–982 (1992).

    Article  ADS  Google Scholar 

  16. W. Macy, Jr., “An analysis of Saturn’s methane 3ν3 band profiles in the terms of an inhomogeneous atmosphere,” Icarus 29, 49–56 (1976).

    Article  ADS  Google Scholar 

  17. M. I. Mishchenko, The Program for Computing Far-Field Light Scattering by Polydisperse Homogeneous Spherical Particles Using the Lorenz-Mie Theory. https://www.giss.nasa.gov/~crmim/publications/index.html.

  18. A. V. Morozhenko, “Jovian cloud stratification,” Sov. Astron. Lett. 10, 323–325 (1984).

    ADS  Google Scholar 

  19. A. V. Morozhenko, “New determination of monochromatic methane absorption coefficients with regard to the thermal conditions in the atmospheres of giant planets. IV. Jupiter and Saturn,” Kinematics Phys. Celestial Bodies 23, 245–257 (2007).

    Article  ADS  Google Scholar 

  20. A. V. Morozhenko and A. S. Ovsak, “Dependence of the aerosol component of optical thickness and the relative concentration of methane on depth in atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 25, 173–181 (2009).

    Article  ADS  Google Scholar 

  21. A. V. Morozhenko and A. S. Ovsak, “On the possibility of separation of aerosol and methane absorption in the long-wavelength spectral range for giant planets,” Kinematics Phys. Celestial Bodies 31, 225–231 (2015).

    Article  ADS  Google Scholar 

  22. A. V. Morozhenko and A. S. Ovsak, “On the probable change of the radius and nature of aerosol particles in the deep layers of Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 33, 88–93 (2017).

    Article  ADS  Google Scholar 

  23. A. V. Morozhenko, A. S. Ovsak, and P. P. Korsun, “Vertical structure of Jupiter’s cloud layer before and after the impact by comet Shoemaker–Levy 9,” Kinematics Phys. Celestial Bodies 11, 1–13 (1995).

    Google Scholar 

  24. A. V. Morozhenko, A. S. Ovsak, A. P. Vid’machenko, V. G. Tejfel, and P. G. Lysenko, “Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 30–37 (2016).

    Article  ADS  Google Scholar 

  25. O. J. Mousis, D. H. Atkinson, and the Hera Team, “The Hera Saturn entry probe mission. A proposal in response to ESA call for a medium size mission opportunity in ESA’s science programme for launch in 2019-2030 (M5)” (2016). https://arxiv.org/abs/1510.07685.

  26. A. S. Ovsak, “Upgraded technique to analyze the vertical structure of the aerosol component of the atmospheres of giant planets,” Kinematics Phys. Celestial Bodies 29, 291–300 (2013).

    Article  ADS  Google Scholar 

  27. A. S. Ovsak, “Vertical structure of cloud layers in the atmospheres of giant planets. I. On the influence of variations of some atmospheric parameters on the vertical structure characteristics,” Sol. Syst. Res. 49, 46–53 (2015).

    Article  ADS  Google Scholar 

  28. A. S. Ovsak, “Changes in the characteristics of the upper layers of the Jovian atmosphere from the data on the integral observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 25–32 (2015).

    Article  ADS  Google Scholar 

  29. A. S. Ovsak, “Variations of the volume scattering coefficient of aerosol in the Jovian atmosphere from observations of the planetary disk,” Kinematics Phys. Celestial Bodies 31, 197–204 (2015).

    Article  ADS  Google Scholar 

  30. A. S. Ovsak, “On determining the vertical structure of the aerosol component in the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 34, 37–51 (2018).

    Article  ADS  Google Scholar 

  31. A. S. Ovsak, “On possible changes in the physical characteristics of the aerosol in the deep layers of the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 35, 28–37 (2019).

    Article  ADS  Google Scholar 

  32. O. Ovsak and N. Kostogryz, “The method of computer analysis a vertical structure of aerosol component in the atmospheres of the Giant planets,” in Proc. AGU Chapman Conf. on Crossing Boundaries in Planetary Atmospheres: From Earth to Exoplanets, Annapolis, Md., June 24–27, 2013 (American Geophysical Union, 2013), abstract no. 1677256.

  33. A. S. Ovsak and A. V. Morozhenko, “Corrected spectral dependence of the imaginary part of the refractive index of aerosol in Jupiter’s atmosphere in the short-wavelength spectral range,” Kinematics Phys. Celestial Bodies 33, 239–244 (2017).

    Article  ADS  Google Scholar 

  34. A. S. Ovsak, V. G. Tejfel, and P. G. Lysenko, “Vertical structure of the volume scattering coefficient of aerosol in latitude belts of Jupiter’s disc,” Kinematics Phys. Celestial Bodies 32, 181–188 (2016).

    Article  ADS  Google Scholar 

  35. A. S. Ovsak, V. G. Tejfel, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).

    Article  ADS  Google Scholar 

  36. S. Pérez-Hoyos, J. F. Sanz-Requena, A. Sánchez-Lavega, P. G. J. Irwin, and A. Smith, “Saturn’s tropospheric particles phase function and spatial distribution from Cassini ISS 2010–11 observations,” Icarus 277, 1–18 (2016).

    Article  ADS  Google Scholar 

  37. B. Ragent, D. S. Colburn, K. A. Rages, et al., “The clouds of Jupiter: Results of the Galileo Jupiter mission probe Nephelometer experiment,” J. Geophys. Res.: Planets 103, 22891–22909 (1998).

    Article  ADS  Google Scholar 

  38. M. T. Roman, D. Banfield, and P. J. Gierasch, “Saturn’s cloud structure inferred from Cassini ISS,” Icarus 225, 93–110 (2013).

    Article  ADS  Google Scholar 

  39. A. Sánchez-Lavega, R. Hueso, and S. Pérez-Hoyos, “The three-dimensional structure of Saturn’s equatorial jet at cloud level,” Icarus 187, 510–519 (2007).

    Article  ADS  Google Scholar 

  40. R. Santer and A. Dollfus, “Optical reflectance polarimetry of Saturn’s globe and rings: IV. Aerosols in the upper atmosphere of Saturn,” Icarus 48, 496 (1981).

    Article  ADS  Google Scholar 

  41. L. A. Sromovsky, R. Y. Baines, and P. M. Fry, “Saturn’s south polar cloud composition and structure inferred from 2006 Cassini/VIMS spectra and ISS images,” Icarus 344, 113398 (2020).

    Article  Google Scholar 

  42. V. G. Tejfel, L. A. Usoltzeva, and G. A. Kharitonova, “The spectral characteristics and probable structure of the cloud layer of Saturn,” in Planetary Atmospheres: Proc. 40th IAU Symp., Marfa, Tex., Oct. 26–31, 1969, Ed. by C. Sagan, T. C. Owen, and H. J. Smith (Reidel, Dordrecht, 1971), p. 375.

  43. T. Temma, N. J. Chanover, A. A. Simon-Miller, D. A. Glenar, J. J. Hillman, and D. M. Kuehn, “Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging,” Icarus 175, 464–489 (2005).

    Article  ADS  Google Scholar 

  44. A. P. Vid’machenko, Zh. M. Dlugach, and A. V. Morozhenko, “Nature of the optical inhomogeneity of Saturn’s disk,” Astron. Vestn. 17, 216–224 (1983).

    ADS  Google Scholar 

  45. R. West, “Clouds and aerosols in Saturn’s atmosphere,” Presented at Saturn in the 21st Century: Saturn Sci. Conf., Madison, Wisc., Aug. 4–7, 2014. http://www.ssec.wisc.edu/meetings/21st_saturn/program/Oral_ Presentati-ons/Oral_Presentations_08062014/1.%20West_oral_SatSciConf2014.pdf.

  46. R. V. Yelle, J. Serigano, T. T. Koskinen, S. M. Horst, M. E. Perry, R. S. Perryman, and J. H. Waite, “Thermal structure and composition of Saturn’s upper atmosphere from Cassini/Ion Neutral Mass Spectrometer measurements,” Geophys. Res. Lett. 45, 10951–10958 (2018).

    Article  ADS  Google Scholar 

  47. R. E. Young, “The Galileo probe mission to Jupiter: Science overview,” J. Geophys. Res.: Planets 103, 22775–22790 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to O.V. Morozhenko, Dr. Sci. (Phys.–Math.), for helpful consultations on the computational algorithms required to solve the problem under consideration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Ovsak.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsak, O.S. On the Altitude Dependence of Aerosol Volume Scattering Coefficient in the Saturn’s Atmosphere. I. Integral Disk. Kinemat. Phys. Celest. Bodies 37, 135–141 (2021). https://doi.org/10.3103/S0884591321030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321030053

Keywords:

Navigation