Skip to main content
Log in

Cosmic Ray Flux in the Diffusion Approximation

  • SPACE PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The propagation of cosmic rays in the interplanetary medium is considered based on the kinetic Fokker–Planck equation. The analytical expression for the anisotropic part of the cosmic ray distribution function is derived in the approximation of small anisotropy. It is shown that, under isotropic scattering of energetic charged particles on interplanetary magnetic field fluctuations, the cosmic ray distribution function depends exponentially on the cosine of the angle between the particle velocity and radial direction. The expression for the cosmic ray flux density is obtained. It is shown that the value of the particle flux density is defined by the spatial distribution of the cosmic ray density and by the temporal dependence of the particle density. The cosmic ray transport equations have been derived (the hyperdiffusion equation and the telegraph equation). On the basis of these equations, the spatiotemporal distribution of solar cosmic ray intensity and the anisotropy of the particle angular distribution are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1973; Nauka, Moscow, 1979).

  2. B. A. Gal’perin, I. N. Toptygin, and A. A. Fradkin, “Scattering of particles by magnetic inhomogeneities in a strong magnetic field,” Zh. Exp. Theor. Phys. 33, 526 (1971).

    ADS  Google Scholar 

  3. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).

  4. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Nauka, Moscow, 1976; Mir, Moscow, 1985).

  5. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).

  6. V. I. Shishov, “Propagation of high-energy solar protons in an interplanetary magnetic field,” Geomagn. Aeron. 6, 223 (1966).

    MathSciNet  Google Scholar 

  7. W. I. Axford, “Anisotropic diffusion of solar cosmic rays,” Planet. Space Sci. 13, 1301–1309 (1965).

    Article  ADS  Google Scholar 

  8. J. Beeck and G. Wibberenz, “Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium,” Astrophys. J. 311, 437 (1986).

    Article  ADS  Google Scholar 

  9. J. W. Bieber and R. A. Burger, “Cosmic-ray streaming in the Born approximation,” Astrophys. J. 348, 597–607 (1990).

    Article  ADS  Google Scholar 

  10. J. W. Bieber, P. A. Evenson, and M. A. Pomerantz, “Focusing anisotropy of solar cosmic rays,” J. Geophys. Res.: Space Phys. 91, 8713 (1986).

    Article  ADS  Google Scholar 

  11. L. I. Dorman and M. E. Katz, “Cosmic ray kinetics in space,” Space Sci. Rev. 70, 529–575 (1977).

    Article  ADS  Google Scholar 

  12. W. Droge, Y. Y. Kartavych, B. Klecker, and G. A. Kovaltsov, “Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere,” Astrophys. J. 709, 912–919 (2010).

    Article  ADS  Google Scholar 

  13. J. Dunkel, P. Talkner, and P. Hanggi, “Relativistic diffusion processes and random walk models,” Phys. Rev. D 75, 043001 (2007).

    Article  ADS  Google Scholar 

  14. J. A. Earl, “Diffusion of charged particles in a random magnetic field,” Astrophys. J. 180, 227–238 (1973).

    Article  ADS  Google Scholar 

  15. J. A. Earl, “Analytical description of charged particle transport along arbitrary guiding field configurations,” Astrophys. J. 251, 739 (1981).

    Article  ADS  Google Scholar 

  16. F. Effenberger and Y. Litvinenko, “The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. Isotropic pitch angle scattering,” Astrophys. J. 783, 15 (2014).

    Article  ADS  Google Scholar 

  17. Yu. I. Fedorov, “Cosmic-ray distribution function under anisotropic scattering of particles by magnetic-field fluctuations,” Kinematics Phys. Celestial Bodies 35, 1–16 (2019).

    Article  ADS  Google Scholar 

  18. Yu. I. Fedorov, “The distribution function of solar cosmic rays under prolonged particle injection,” Kinematics Phys. Celestial Bodies 35, 203–216 (2019).

    Article  ADS  Google Scholar 

  19. Yu. I. Fedorov and B. A. Shakhov, “Description of non-diffusive solar comic ray propagation in a homogeneous regular magnetic field,” Astron. Astrophys. 402, 805–817 (2003).

    Article  ADS  Google Scholar 

  20. L. A. Fisk and W. I. Axford, “Anisotropies of solar cosmic rays,” Sol. Phys. 7, 486–498 (1969).

    Article  ADS  Google Scholar 

  21. T. J. Gombosi, J. R. Jokipii, J. Kota, et al., “The telegraph equation in charged particle transport,” Astrophys. J. 403, 377 (1993).

    Article  ADS  Google Scholar 

  22. K. Hasselmann and G. Wibberenz, “Scattering charged particles by random electromagnetic fields,” Z. Geophys. 34, 353 (1968).

    Google Scholar 

  23. K. Hasselmann and G. Wibberenz, “A note of the parallel diffusion coefficient,” Astrophys. J. 162, 1049 (1970).

    Article  ADS  Google Scholar 

  24. J. R. Jokipii, “Propagation of cosmic rays in the solar wind,” Rev. Geophys. Space Phys. 9, 27–87 (1971).

    Article  ADS  Google Scholar 

  25. J. E. Kunstmann, “A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field,” Astrophys. J. 229, 812 (1979).

    Article  ADS  Google Scholar 

  26. Y. E. Litvinenko and P. I. Noble, “Comparison of the telegraph and hyperdiffusion approximations in cosmic ray transport,” Phys. Plasmas 23, 062901 (2016).

    Article  ADS  Google Scholar 

  27. Y. E. Litvinenko and R. Schlickeiser, “The telegraph equation for cosmic-ray transport with weak adiabatic focusing,” Astron. Astrophys. 554, A59 (2013).

    Article  ADS  Google Scholar 

  28. M. A. Malkov and R. Z. Sagdeev, “Cosmic ray transport with magnetic focusing and the "telegraph” model,” Astrophys. J. 808, 157 (2015).

    Article  ADS  Google Scholar 

  29. J. Masoliver and G. H. Weiss, “Finite-velocity diffusion,” Eur. J. Phys. 17, 190–196 (1996).

    Article  Google Scholar 

  30. L. I. Miroshnichenko and J. A. Perez-Peraza, “Astrophysical aspects in the studies of solar cosmic rays,” Int. J. Mod. Phys. A 23, 1–141 (2008).

    Article  ADS  Google Scholar 

  31. H. Moraal and K. G. McCracken, “The time structure of ground level enhancement in solar cycle 23,” Space Sci. Rev. 171, 85–95 (2012).

    Article  ADS  Google Scholar 

  32. N. A. Schwadron and T. I. Gombosi, “A unifying comparison of nearly scatter free transport model,” J. Geophys. Res.: Space Phys. 99, 19301 (1994).

    Article  ADS  Google Scholar 

  33. E. V. Vashenyuk, Yu. V. Balabin, J. Perez-Peraza, et al., “Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23,” Adv. Space Res. 38, 411–418 (2006).

    Article  ADS  Google Scholar 

  34. H. J. Volk, “Cosmic ray propagation in interplanetary space,” Rev. Geophys. Space Phys. 13, 547–566 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Fedorov.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, Y.I. Cosmic Ray Flux in the Diffusion Approximation. Kinemat. Phys. Celest. Bodies 37, 107–120 (2021). https://doi.org/10.3103/S088459132103003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S088459132103003X

Keywords:

Navigation