Skip to main content
Log in

The Xgal Catalog of X-Ray Galaxies

  • EXTRAGALACTIC ASTRONOMY
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

One of the mainstreams in modern X-ray astronomy is research into extragalactic X-ray sources on the basis of the data acquired at the X-ray Multi-Mirror Newton (XMM-Newton) space observatory. According to observations, X-rays coming from galaxies are mainly radiated from their central regions, i.e., active galactic nuclei and groups of X-ray sources in the galactic disks. In this paper, we consider the cross-correlation between the 4XMM-DR9 catalog and the Hyper-Linked Extragalactic Databases and Archives (HyperLeda) of galaxies. The 4XMM-DR9 catalog is a large, up-to-date catalog of observations, which contains 550 124 unique sources and covers 2.85% of the sky, while the HyperLeda database comprises 1.5 million galaxies. Our analysis resulted in a sample of more than 5000 X-ray galaxies, most of which are active galactic nuclei of low luminosity. From this sample, we selected galaxies whose the X-ray flux exceeds F = 10–20 J/cm2s. The sources of this kind are of particular interest since it is easier to construct an informative spectrum for them. The identified and classified catalog of 1172 manually verified galaxies—the X-ray galaxy catalog named Xgal—was created. In the Xgal catalog, most galaxies have an active X-ray nucleus; Seyfert galaxies predominate among them at short distances, while quasars are prevalent at large distances. We revealed 169 galaxies that exhibit extended nuclei with a visible surface brightness distribution and 173 galaxies with more than one X-ray source. Based on the Xgal catalog, we created a catalog of elongated X-ray galaxies (the optical angular sizes of which are a > 60″) that have X-ray sources outside the nucleus. Both catalogs are freely accessible. The Xgal catalog may serve to construct the spectra of objects of a certain class in different ranges, to develop or improve the theory of their emission, and to survey bright and extended quasars. Moreover, the entire cross-sample may be used to study active galactic nuclei with low luminosity and a large-scale structure of the universe in the X-ray range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. V. Zadorozhna, A. V. Tugay, and S. Yu. Shevchenko, “Extragalactic X-ray discrete sources,” Visn. Astron. Shk. 16 (1), 1–7 (2020).

    Google Scholar 

  2. A. V. Zasov and K. A. Postnov, General Astrophysics, 2nd ed. (Vek 2, Fryazino, 2011) [in Russian].

  3. M. S. Longair, High Energy Astrophysics (Cambridge Univ. Press, Cambridge, 2011; Mir, Moscow, 1984).

  4. R. J. Assef, D. Stern, G. Noirot, et al., “The WISE AGN Catalog,” Astrophys. J., Suppl. Ser. 234, 1–22 (2018).

    Article  Google Scholar 

  5. A. Caccianiga, P. Severgnini, R. Della Ceca, et al., “Elusive AGN in the XMM-Newton bright serendipitous survey,” Astron. Astrophys. 470, 557–570 (2007).

    Article  ADS  Google Scholar 

  6. J. Ebrero, F. J. Carrera, M. J. Page, et al., “The XMM-Newton serendipitous survey. VI. The X-ray luminosity function,” Astron. Astrophys. 493, 55–69 (2009).

    Article  ADS  Google Scholar 

  7. A. Elyiv, N. Clerc, M. Plionis, et al., “Angular correlation functions of X-ray point-like sources in the full exposure XMM-LSS field,” Astron. Astrophys. 537, 131–145.

  8. G. Fabbiano, “X-rays from galaxies,” in The Chandra X-ray Observatory. Exploring the High Energy Universe (Smithsonian Inst. and IOP, Bristol, 2019), Ch. 7, pp. 7-1–7-42.

  9. C. Gabriel, M. Denby, D. J. Fyfe, et al., Astronomical Data Analysis Software and Systems (ADASS) XIII (Astronomical Society of the Pacific, San Francisco, Cal., 2004), in Ser.: ASP Conference Series, Vol. 314.

  10. D. Lena, G. Panizo-Espinar, P. G. Jonker, et al., “Characterisation of a candidate dual AGN,” Mon. Not. R. Astron. Soc. 478, 1326–1340 (2018).

    Article  ADS  Google Scholar 

  11. M. S. Longair, Galaxy Formation (Springer-Verlag, Berlin, 2008).

    Google Scholar 

  12. E. Lusso and G. Risaliti, “The physical relation between disc and coronal emission in quasars,” Frontiers Astron. Space Sci. 4, 66 (2017).

    Article  ADS  Google Scholar 

  13. K. Migkas, G. Schellenberger, T. H. Reiprich, et al., “Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX–T scaling relation,” Astron. Astrophys. 636, A15 (2020).

    Article  Google Scholar 

  14. B. Mingo, M. G. Watson, S. R. Rosen, et al., “The MIXR sample: AGN activity versus star formation across the cross-correlation of WISE, 3XMM, and FIRST/NVSS,” Mon. Not. R. Astron. Soc. 462, 2631–2667 (2016).

    Article  ADS  Google Scholar 

  15. L. Strüder, U. Briel, K. Dennerl, et al., “The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera,” Astron. Astrophys. 365, L18–L26 (2001).

    Article  ADS  Google Scholar 

  16. The XMM-Newton ABC Guide: An Introduction to XMM-Newton Data Analysis Version 6.0 for XMM-SAS v 18.0 (2019). https://heasarc.gsfc.nasa.gov/docs/xmm/abc/.

  17. I. Traulsen, A. D. Schwope, G. Lamer, et al., “The XMM-Newton serendipitous survey. X: The second source catalogue from overlapping XMM-Newton observations and its long-term variable content” (2020). https://arxiv.org/abs/2007.02932.

  18. A. Tugay, “Bright X-ray galaxies in SDSS filaments,” Adv. Astron. Space Phys. 3, 116–121 (2013).

    ADS  Google Scholar 

  19. A. V. Tugay and S. Yu. Shevchenko, “Infrared counterparts of X-ray galaxies,” Odessa Astron. Publ. 32, 42–45 (2019).

    Article  ADS  Google Scholar 

  20. A. Tugay, “Signatures of large-scale structure of Universe in X-rays,” Odessa Astron. Publ. 25, 1–3 (2013).

    Google Scholar 

  21. M. J. L. Turner, A. Abbey, M. Arnaud, et al., “The European photon imaging camera on XMM-Newton: The MOS cameras,” Astron. Astrophys. 365, L27–L35 (2001).

    Article  ADS  Google Scholar 

  22. M. P. Veron-Cetty and P. Veron, “A catalogue of quasars and active nuclei: 13th edition,” Astron. Astrophys. 518, A10 (2010).

  23. M. G. Watson, J.-L. Augueres, J. Ballet, et al., “The XMM-Newton serendipitous survey — I. The role of XMM-Newton Survey Science Centre,” Astron. Astrophys. 365, L51–L59 (2001).

    Article  ADS  Google Scholar 

  24. M. G. Watson, A. C. Schroder, D. Fyfe, et al., “The XMM-Newton serendipitous survey. V. The second XMM-Newton serendipitous source catalogue,” Astron. Astrophys. 493, 339–373 (2009).

    Article  ADS  Google Scholar 

  25. N. A. Webb, M. Coriat, I. Traulsen, et al., “The XMM-Newton serendipitous survey. IX. The fourth XMM-Newton serendipitous source catalogue,” Astron. Astrophys. 641, A136 (2020).

    Article  Google Scholar 

  26. XMM-Newton Users Handbook Issue 2.17 (2019). https://xmmtools.cosmos.esa.int/external/xmm_user_support/ documentation/uhb/.

  27. M. Zhou and M. Gu, “The composite X-ray spectra of radio-loud and radio-quiet SDSS quasars,” (2020). https://arxiv.org/abs/2007.01049.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. V. Zadorozhna, A. V. Tugay, S. Yu. Shevchenko or N. G. Pulatova.

Additional information

Translated by E. Petrova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadorozhna, L.V., Tugay, A.V., Shevchenko, S.Y. et al. The Xgal Catalog of X-Ray Galaxies. Kinemat. Phys. Celest. Bodies 37, 149–157 (2021). https://doi.org/10.3103/S0884591321030077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591321030077

Keywords:

Navigation