Skip to main content
Log in

Comparative Analysis of miRNA Expression Profiles Provides Insight into Regulation of Biosynthesis of Flavonoids and Terpenoids Between Two Varieties of Toona sinensis Sprouts

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In this study, small RNA sequencing has been performed to identify the miRNAs and explore their regulatory mechanism in T. sinensis sprouts. From HPLC analysis, the flavonoid content was higher in the BYC2 (purple toon sprout) than in the GYC2 (green toon sprout), whereas the volatile terpenoids revealed an inverse change. Therefore, the small RNA libraries of two varieties were constructed, and 331 known miRNAs and 23 novel miRNAs were discovered. Differential gene expression analysis demonstrated the upregulation of 25 miRNAs and the downregulation of 27 miRNAs between BYC2 and GYC2. qRT-PCR analysis showed that nine miRNAs involved in the biosynthetic regulation of flavonoids were downregulated in the BYC2, whereas eight miRNAs related to the regulation of the biosynthesis of terpenoids were upregulated, when compared with GYC2. The results indicated that the differential expression of the miRNAs mentioned above played a crucial role in the regulation of the formation of the flavonoids and terpenoids in T. sinensis sprouts. The present study not only fills in the paucity of knowledge regarding the T. sinensis miRNA, it also provides more valuable information for the genetic improvement of T. sinensis cultivation for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AACT:

Acetyl-CoA-acetyltransferase

ARF:

Auxin response factor

BYC2:

Black Youchun

CHS:

Chalcone synthase

C4H:

Cinnamic acid 4-hydroxylase

4CL:

4-Coumarate CoA ligase

DFR:

Dihydroflavonol 4- reductase

DXS:

1-Deoxy-d-xylulose-5-phosphate synthase

ERF:

Ethylene-responsive transcription factor

FAS:

(E)-β-farnesene synthase

F3H:

Flavanone 3-hydroxylase

FLS:

Flavonol synthase

FPPS:

Farnesyl diphosphate synthase

GDS:

(-)-Germacrene D synthase

GO:

Enrichment Gene Ontology enrichment

GYC2:

Green Youchun

MBW:

MYB-bHLH-WD40 (MBW) transcription complex

miRNA:

MicroRNA

MEP:

2-C-methyl-d-erythritol-4-phosphate

MYB:

Myeloblastosis

HMGR:

3-Hydroxy-3-methyl glutaryl coenzyme A reductase

HCT:

Shikimate O-hydroxycinnamoyltransferase

HDS:

4-Hydroxy-3-methylbut-2-enyl-diphosphate synthase

KEGG:

Pathway kyoto encyclopedia of genes and genomes pathway

LAR:

Leucoanthocyanidin reductase

KS:

Ent-kaur-16-ene synthase

LDOX:

Leucoanthocyanidin dioxygenase

LIS:

Linalool synthase

LS:

(R)-limonene synthase

MK:

Mevalonate kinase

PAL:

Phenylalanine ammonia lyase

PMK:

Phosphomevalonate kinase

qRT-PCR:

Quantitative real-time PCR

SE:

Squalene epoxidase

SQS:

Squalene synthase

sRNA:

Small RNA

SPL:

Squamosa promoter-binding protein-like

TPS:

Terpene synthases

UGT:

Anthocyanidin 3-O-glucosyltransferase

WRKY:

WRKY transcription factor

ZIP:

Homeodomain leucine zipper

References

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics 19:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Hazra S, Chattopadhyay S (2016) Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 6:82–89

    Article  CAS  Google Scholar 

  • Bulgakov VP, Avramenko TV (2015) New opportunities for the regulation of secondary metabolism in plants: focus on microRNAs. Biotechnol Lett 37:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Camargo-Ramírez R, Val-Torregrosa B, Segundo BS (2018) MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol 59:190–204

    Article  PubMed  CAS  Google Scholar 

  • Chen QQ, Rong LY, Shao ZJ, Liu T, Wei L, Song ZQ (2018) Genetic diversity analysis of Toona sinensis germplasms based on SRAP and EST-SSR markers. Acta Hortic Sinica 45:967–976

    Google Scholar 

  • Chen YC, Chen HJ, Huang BM, Chen YC, Chang CF (2019) Polyphenol-rich extracts from Toona sinensis bark and fruit ameliorate free fatty acid-induced lipogenesis through AMPK and LC3 pathways. J Clin Med 8:1664

    Article  CAS  PubMed Central  Google Scholar 

  • Edmonds JM, Staniforth M (1998) Toona Sinensis: Meliaceae. Curtis’s Bot Mag 15:186–193

    Article  Google Scholar 

  • Fan R, Li Y, Li C, Zhang Y (2015) Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS ONE 10:e0139002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2011) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Peng H, Chen FB, Luo M, Li WB (2019) Genome-wide analysis of transcription factors related to anthocyanin biosynthesis in carmine radish (Raphanus sativus L.) fleshy roots. Peer J 7:e8041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2012) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  Google Scholar 

  • Gupta OP, Dahuja A, Sachdev A, Kumari S, Jain PK, Vinutha T, Praveen S (2019) Conserved miRNAs modulate the expression of potential transcription factors of isoflavonoid biosynthetic pathway in soybean seeds. Mol Biol Rep 46:3713–3730

    Article  CAS  PubMed  Google Scholar 

  • He LH, Tang RM, Shi XW, Wang WB, Cao QH, Liu XY, Wang T, Sun Y, Zhang HM, Li RZ, Jia XY (2019) Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweet potato. BMC Plant Biol 19:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu CY, Huang PL, Chen CM, Mao CT, Chaw SM (2012) Tangy scent in Toona sinensis (Meliaceae) leaflets: isolation, functional characterization, and regulation of TsTPS1 and TsTPS2, two key terpene synthase genes in the biosynthesis of the scent compound. Curr Pharm Biotechnol 13:1–12

    Article  Google Scholar 

  • Jiang XX, Zhang BB, Lei MH, Zhang JJ, Zhang JF (2019) Analysis of nutrient composition and antioxidant characteristics in the tender shoots of Chinese toon picked under different conditions. LWT-Food Sci Technol 109:137–144

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee CH, Carroll BJ (2018) Evolution and diversification of small RNA pathways in flowering plants. Plant Cell Physiol 59:2169–2187

    CAS  PubMed  Google Scholar 

  • Li WB, Wang PP, Li YG, Zhang KX, Ding FQ, Nie TK, Yang X, Lv QX, Zhao L (2015) Identification of microRNAs in response to different day lengths in soybean using high-throughput sequencing and qRT-PCR. PLoS ONE 10:e0132621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licursi V, Conte F, Fiscon G, Paci P (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinform- 20:545

    Article  Google Scholar 

  • Liu BB, Zhang JF, Shi YC (2019) Complete chloroplast genome of Toona sinensis (Meliaceae), a goluptious ‘tree vegetables.’ Mitochondrial DNA Part B 4:3025–3026

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao XF, Carrington JC, Chen XM, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi YJ, Vauchere H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moro B, Chorostecki U, Arikit S, Suarez IP, Höbartner C, Rasia RM, Meyers BC, Palatnik JF (2018) Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Res 46:10709–10723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Liu YJ, Hu MB, Zhang MM, Yang J, Liang F, Huang QW, Wu CJ (2019) Toona sinensis: A comprehensive review on its traditional usages, phytochemisty, pharmacology and toxicology. Rev Bras Farmacogn 29:111–124

    Article  CAS  PubMed  Google Scholar 

  • Pirro S, Zanella L, Kenzo M, Montesano C, Minutolo A, Potesta M, Sobze MS, Canini A, Cirilli M, Muleo R, Colizzi V, Galgani A (2016) MicroRNA from Moringa oleifera: identification by high throughput sequencing and their potential contribution to plant medicinal value. PLoS ONE 11:e0149495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prakash P, Ghosliya D, Gupta V (2015) Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 554:181–195

    Article  CAS  PubMed  Google Scholar 

  • Prakash P, Rajakani R, Gupta V (2016) Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 61:62–74

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Zhang JJ, Zhang JW, Wang ZW, Ran A, Guo HX, Wang D, Zhang JL (2017) Integrated RNA-seq and sRNA-seq analysis reveals miRNA effects on secondary metabolism in Solanum tuberosum L. Mol Genet Genomics 292:37–52

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I (2017) MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci 8:565

    Article  PubMed  PubMed Central  Google Scholar 

  • Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, Ismail I (2019) Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20:586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, Trivedi PK (2016) MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol 171:944–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YP, Xu MH, Deng PP, Gu QY, Yin HW, Xia GH, Jia XB, Yang H, Tam J (2017) Establishment of a rapid method to quantify eight flavonol glycosides for quality assessment of red toon using UPLC. Acta Chromatogr 30:1–7

    CAS  Google Scholar 

  • Singh N, Srivastava S, Sharma A (2016) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575:570–576

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Gautam VS, Das SS, Verma S, Mishra V, Mukherjee S, Sarkar AK (2018) Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta 248:545–558

    Article  CAS  PubMed  Google Scholar 

  • Sui JJ, Qu CQ, Yang JX, Zhang WN, Ji YT (2019) Transcriptome changes in the phenylpropanoid pathway in senescing leaves of Toona sinensis. Acta Physiol Plant 41:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun YY, Qiu Y, Duan MM, Wang JL, Zhang XH, Wang HP, Song JP, Li XX (2017) Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Mol Genet Genomics 292:215–229

    Article  CAS  PubMed  Google Scholar 

  • Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD (2019) The role of UV-B light on small RNA activity during grapevine berry development. G3 9:769–787

  • Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS (2015) Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta 241:1255–1268

    Article  CAS  PubMed  Google Scholar 

  • Wei RC, Qiu DY, Wilson IW, Zhao H, Lu SF, Miao JH, Feng SX, Bai LH, Wu QH, Tu DP, Ma XJ, Tang Q (2015) Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 16:835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen M, Shen Y, Shi S, Tang T (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 13:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Ma YK, Chen T, Wang M, Wang XJ (2012) PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Res 40:W22–W28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP, Liu ZR (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WJ, Grain D, Bobet S, Gourrierec JL, Thévenin J, Kelemen Z, Lepiniec L, Dubos C (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytol 202:132–144

    Article  CAS  PubMed  Google Scholar 

  • Xu XB, Jiang QH, Ma XY, Ying QC, Shen B, Qian YS, Song HM, Wang HZ (2015) Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS ONE 9:e111679

    Article  CAS  Google Scholar 

  • Yang JF, Li BB, Shi WJ, Gong ZZ, Chen L, Hou ZX (2018) Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. J Agric Food Chem 66:10931–10942

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Zhang Y, Cui HH, Liu JW, Wu YQ, Cheng Y, Xu HX, Huang XX, Li ST, Zhou A, Zhang XQ, Bolund L, Chen Q, Wang J, Yang HM, Fang L, Shi CM (2018) WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res 46(W1):W71–W75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. Plant Cell 24:3320–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY (2015) Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 8:98–110

    Article  CAS  PubMed  Google Scholar 

  • Zhai XT, Granvogl M (2019) Characterization of the key aroma compounds in two differently dried Toona sinensis (A. Juss.) Roem. by means of the molecular sensory science concept. J Agric Food Chem 67:9885–9894

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Unver T (2018) A critical and speculative review on microRNA technology in crop improvement: current challenges and future directions. Plant Sci 274:193–200

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song ZQ, Liu T, Guo LL, Li XF (2016) De Novo assembly and comparative transcriptome analysis provide insight into lysine biosynthesis in Toona sinensis Roem. Int J Genom 3:1–9

    Google Scholar 

  • Zhao H, Ren LP, Fan XY, Tang KJ, Li B (2017) Identification of putative flavonoid-biosynthetic genes through transcriptome analysis of Taihe Toona sinensis bud. Acta Physiol Plant 39:122

    Article  CAS  Google Scholar 

  • Zhao H, Feng SS, Zhou W, Kai GY (2019) Transcriptomic analysis of postharvest toon buds and key enzymes involved in terpenoid biosynthesis during cold storage. Sci Hortic 257:108747

    Article  CAS  Google Scholar 

  • Zhou L, Chen JH, Li ZZ, Li XX, Hu XD, Huang Y, Zhao XK, Liang CZ, Wang Y, Sun L, Shi M, Xu XH, Shen F, Chen MS, Han ZJ, Peng ZY, Zhai QN, Chen J, Zhang ZF, Yang RL, Ye JX, Guan ZC, Yang HM, Gui YT, Wang J, Cai ZM, Zhang XQ (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE 5:e15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Gopal Patel’s help to revise the manuscript from Laboratory of Medicinal Plant Biotechnology, Pharmacy College, Zhejiang Chinese Medicine University. We are also grateful to Postgraduate San Peng Fan, Dawei You, and Man Xu for their help to improve the experiment operation from Laboratory of Medicinal Plant Biotechnology, Pharmacy College, Zhejiang Chinese Medicine University. We thank Novogene Technologies (Beijing, China) for supplying small RNA sequencing service.

Funding

This work was supported by grants from the Natural Science Key Foundations of the Anhui Bureau of Education and institution of higher education outstanding top talent cultivation funding project of the Anhui Bureau of Education (No. KJ2019A0515, gxgwfx2020049), the Natural Science Key Foundation of Fuyang normal university (No. 2020FSKJ01ZD), the Innovation Program for College Students (No. 202010371013), the Open Fund of Advantaged and Characteristic Disciplines (Traditional Chinese Medicine of Zhejiang Chinese Medical University) for Key Construction Universities in Zhejiang Province (No. ZYAOX2018027).

Author information

Authors and Affiliations

Authors

Contributions

HZ, WZ, and GK conceived and designed this experiment. HZ drafted the manuscript. WL and CQ collected samples of toon sprouts. YC and SF extracted and assayed flavonoid components and volatile terpenoid compounds. PG, HZ and WZ carried out qRT-PCR experiments and analyzed the data. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hu Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 26 KB) . Transcript counts of miRNAs in four small RNA libraries of toon sprouts

12374_2021_9321_MOESM2_ESM.jpg

Supplementary file2 (JPG 1392 KB) Figure S1. Predicted secondary structures of potential novel miRNAs from toon sprouts. Sequences indicated in red correspond to predicted miRNA

12374_2021_9321_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 30344 KB) Table S2. Target prediction results of miRNAs from toon sprouts. Table S2. Target prediction results of miRNAs from toon sprouts.

Supplementary file4 (XLSX 888 KB) Table S3. Potential target numbers of miRNAs from toon sprouts

Supplementary file5 (XLSX 47 KB) Table S4. GO enrichment analysis of predicted target unigenes

Supplementary file6 (XLSX 17 KB) Table S5. KEGG pathway analysis of predicted target unigenes

Supplementary file7 (XLSX 54 KB) Table S6. Differential expression levels of miRNAs from toon sprouts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Shi, X., Shen, C. et al. Comparative Analysis of miRNA Expression Profiles Provides Insight into Regulation of Biosynthesis of Flavonoids and Terpenoids Between Two Varieties of Toona sinensis Sprouts. J. Plant Biol. 65, 291–310 (2022). https://doi.org/10.1007/s12374-021-09321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-021-09321-6

Keywords

Navigation