Skip to main content
Log in

Effective Method for Measuring Shear Nonlinearity of Nanocomposites Using Digital Image Correlation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The nonlinear shear of resin in fiber reinforced plastic composites is a plastic feature that cannot be ignored. Some materials scientists were often stuck on how to in situ characterize accurately shear nonlinear property of the modified resin in the composite. In this paper we try to solve this problem. Firstly, we adopted DIC method to measure the full-field shear strain; secondly we adopted a Ramberg–Osgood constitutive to quantize accurately the modification effect on shear properties by nanoparticles. Finally, we conducted many modification experiments with common nanoparticles (poly aryl ether ketone, nano-silica, and multi-walled carbon nanotubes, MWCNTs: 12 cases) to verified that the method we proposed is simple and effective to conduct for materials scientist without the esoteric mechanical reserve. In addition, the quantization will facilitate researchers engaged in finite element analysis with several experimental data references for related simulation-based research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates. ASTM International. 2006.

References

  1. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W., Schulte, K.: Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A 36(11), 1525–1535 (2005)

    Article  Google Scholar 

  2. Yokozeki, T., Iwahori, Y., Ishiwata, S., Enomoto, K.: Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy. Compos. Part A 38(10), 2121–2130 (2007)

    Article  Google Scholar 

  3. Chandrasekaran, V.C.S., Advani, S.G., Santare, M.H.: Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon 48(13), 3692–3699 (2010)

    Article  Google Scholar 

  4. Mujika, F., Vargas, G., Ibarretxe, J., De Gracia, J., Arrese, A.: Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites. Compos. B 43(3), 1336–1340 (2012)

    Article  Google Scholar 

  5. Xu, X., Zhou, Z., Hei, Y., Zhang, B., Bao, J., Chen, X.: Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer. Compos. Sci. Technol. 95, 75–81 (2014)

    Article  Google Scholar 

  6. Yao, X.F., Zhao, H.P., Yeh, H.Y.: Micro/nanoscopic characterizations of epoxy-silica nanocomposites. JRPC 25(2), 189–196 (2006)

    Google Scholar 

  7. Uddin, M.F., Sun, C.T.: Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7–8), 1637–1643 (2008)

    Article  Google Scholar 

  8. Sprenger, S., Kothmann, M.H., Altstaedt, V.: Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos. Sci. Technol. 105, 86–95 (2014)

    Article  Google Scholar 

  9. Yao, X., Yeh, H.-Y., Zhou, D., Zhang, Y.: The structural characterization and properties of SiO2-epoxy nanocomposites. J. Compos. Mater. 40(4), 371–381 (2006)

    Article  Google Scholar 

  10. Yuan, Y., Niu, K., Wang, Z.: Compressive strength prediction of fibre reinforced polymer composites under lateral disturbance. Polym Test. 78, 105952 (2019)

    Article  Google Scholar 

  11. Yuan, Y., Niu, K., Zhang, Z.: Compressive damage mode manipulation of fiber-reinforced polymer composites. EnFM 223, 6799 (2019)

    Google Scholar 

  12. Mannov, E., Schmutzler, H., Chandrasekaran, S., Viets, C., Buschhorn, S., Toelle, F., et al.: Improvement of compressive strength after impact in fibre reinforced polymer composites by matrix modification with thermally reduced graphene oxide. Compos. Sci. Technol. 87, 36–41 (2013)

    Article  Google Scholar 

  13. Gao, E.L., Wen, Y.Y., Yuan, Y.N., Li, C., Xu, Z.P.: Intrinsic mechanical properties of graphene oxide films: Strain characterization and the gripping effects. Carbon 118, 467–474 (2017)

    Article  Google Scholar 

  14. Siddiqui, N.A., Woo, R.S.C., Kim, J.-K., Leung, C.C.K., Munir, A.: Mode I interlaminar fracture behaviour and mechanical properties of CFRPs with nanoclay-filled epoxy matrix (vol 38, pg 449, 2007). Compos. Part A 38(7), 1810 (2007)

    Article  Google Scholar 

  15. Khan, S.U., Kim, J.-K.: Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers. Carbon 50(14), 5265–5277 (2012)

    Article  Google Scholar 

  16. Arai, M., Noro, Y., Sugimoto, K.-I., Endo, M.: Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos. Sci Technol. 68(2), 516–525 (2008)

    Article  Google Scholar 

  17. Seyhan, A.T., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. EnFM 75(18), 5151–5162 (2008)

    Google Scholar 

  18. Tang, Y., Ye, L., Zhang, Z., Friedrich, K.: Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—A review. Compos. Sci. Technol. 86, 26–37 (2013)

    Article  Google Scholar 

  19. Yuan, Y.N., Yao, X.F., Ma, Y.J., Liu, B.: Impact properties of multi-wall carbon nanotubes modified composites. J. Test. Evaluat. 46(3), 20160655 (2018)

    Article  Google Scholar 

  20. Wicks, S.S., de Villoria, R.G., Wardle, B.L.: Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos. Sci. Technol. 70(1), 20–28 (2010)

    Article  Google Scholar 

  21. Davis, D.C., Whelan, B.D.: An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites B 42(1), 105–116 (2011)

    Article  Google Scholar 

  22. Almuhammadi, K., Alfano, M., Yang, Y., Lubineau, G.: Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes. Mater. Design. 53, 921–927 (2014)

    Article  Google Scholar 

  23. Liu, C., Du, D., Li, H., Hu, Y., Xu, Y., Tian, J., et al.: Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos. B Eng. 97, 361–367 (2016)

    Article  Google Scholar 

  24. Wichmann, M.H.G., Sumfleth, J., Gojny, F.H., Quaresimin, M., Fiedler, B., Schulte, K.: Glass-fibre-reinforced composites with enhanced mechanical and electrical properties—Benefits and limitations of a nanoparticle modified matrix. EnFM. 73(16), 2346–2359 (2006)

    Google Scholar 

  25. Abot, J.L., Song, Y., Schulz, M.J., Shanov, V.N.: Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Compos. Sci. Technol. 68(13), 2755–2760 (2008)

    Article  Google Scholar 

  26. Liu, L., Jia, C., He, J., Zhao, F., Fan, D., Xing, L., et al.: Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 121, 56–72 (2015)

    Article  Google Scholar 

  27. Zhang, H., Liu, Y., Kuwata, M., Bilotti, E., Peijs, T.: Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. A Appl. Sci. Manuf. 70, 102–110 (2015)

    Article  Google Scholar 

  28. Yuan, Y.N., Yao, X.F., Niu, K.M., Liu, B., Wuyun, Q.: Compressive failure of fiber reinforced polymer composites by imperfection. Compos. Part A 118, 106–116 (2019)

    Article  Google Scholar 

  29. Selmy, A.I., Elsesi, A.R., Azab, N.A., Abd El-baky, M.A.: Interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composite laminates. Compos. B 43(4), 1714–1719 (2012)

    Article  Google Scholar 

  30. Liang, Y., Wang, H., Gu, X.: In-plane shear response of unidirectional fiber reinforced and fabric reinforced carbon/epoxy composites. Polym. Test. 32(3), 594–601 (2013)

    Article  Google Scholar 

  31. Van Paepegem, W., De Baere, I., Degrieck, J.: Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part I: Experimental results. Compos. Sci. Technol. 66(10), 1455–1464 (2006)

    Article  Google Scholar 

  32. He, Y., Makeev, A.: Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study. Int. J. Solids Struct. 51(6), 1263–1273 (2014)

    Article  Google Scholar 

  33. Yuan, Y.N., Yao, X.F., Liu, B., Yang, H., Imtiaz, H.: Failure modes and strength prediction of thin ply CFRP angle-ply laminates. Compos. Struct. 176, 729–735 (2017)

    Article  Google Scholar 

  34. Mihai, L.A., Goriely, A.: How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc. Math. Phys. Eng. Sci. 473(2207), 20170607 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Yuan, Y.N., Wang, S., Yang, H., Yao, X.F., Liu, B.: Analysis of pseudo-ductility in thin-ply carbon fiber angle-ply laminates. Compos. Struct. 180, 876–882 (2017)

    Article  Google Scholar 

  36. Sabik, A.: Direct shear stress vs strain relation for fiber reinforced composites. Compos. B Eng. 139, 24–30 (2018)

    Article  Google Scholar 

  37. He, Y., Makeev, A., Shonkwiler, B.: Characterization of nonlinear shear properties for composite materials using digital image correlation and finite element analysis. Compos. Sci. Technol. 73, 64–71 (2012)

    Article  Google Scholar 

  38. Fan, H., Jin, F., Fang, D.: Nonlinear mechanical properties of lattice truss materials. Mater Design. 30(3), 511–517 (2009)

    Article  Google Scholar 

  39. Meng, F., Li, W., Fan, H., Zhou, Y.: A nonlinear theory for CFRP strengthened aluminum beam. CmpSt. 131, 574–577 (2015)

    Google Scholar 

  40. Qiu, Z., Fan, H.: Nonlinear modeling of bamboo fiber reinforced composite materials. CmpSt. 238, 111976 (2020)

    Google Scholar 

  41. Pan, B., Li, K.: A fast digital image correlation method for deformation measurement. OptLE. 49(7), 841–847 (2011)

    Google Scholar 

  42. Yuan, Y.N., Yao, X.F., Liu, B.: Caustic investigation of dynamic interactions between propagating matrix crack and modified fibre bundles. Polym. Test. 68, 287–293 (2018)

    Article  Google Scholar 

  43. Yuan, Y., Wang, S.: Measurement of the energy release rate of compressive failure in composites by combining infrared thermography and digital image correlation. Compos. A Appl. Sci. Manuf. 122, 59–66 (2019)

    Article  Google Scholar 

  44. Ma, Y.J., Yao, X.F., Wang, D.: Experimental investigation on mechanical properties of CNT film using digital speckle correlation method. OptLE. 50(11), 1575–1581 (2012)

    Google Scholar 

  45. Patel, J., Peralta, P.: Mechanisms for Kink Band Evolution in Polymer Matrix Composites: A Digital Image Correlation and Finite Element Study. ASME 2016 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers. 2016.

  46. Wang, S., Yao, X.F., Su, Y.Q., Liu, W.: The feasibility and application of gray scale adjustment method in high temperature digital image correlation. MeScT. 28(2), 025201 (2016)

    Google Scholar 

  47. Hao, W., Zhu, J., Zhu, Q., Chen, L., Li, L.: Displacement field denoising for high-temperature digital image correlation using principal component analysis. Mech. Adv. Mater. Struct. 24(10), 830–839 (2017)

    Article  Google Scholar 

  48. Su, Y., Yao, X., Wang, S., Ma, Y.: Refraction error correction for deformation measurement by digital image correlation at elevated temperature. OptEn. 56(3), 034106 (2017)

    Google Scholar 

  49. International Digital Image Correlation Society, Jones, E.M.C., Iadicola, M.A. (Eds.): A Good Practices Guide for Digital Image Correlation. (2018) https://doi.org/10.32720/idics/gpg.ed1.

  50. Committee A. ASTM D2344 Standard test method for short-beam strength of polymer matrix composite materials and their laminates. Consho-hocken, USA: ASTM.

  51. Mobasher, B.: Textile Fiber Composites: Testing and Mechanical Behavior. Textile Fibre Composites in Civil Engineering, pp. 101–150. Woodhead Publishing, Sawston (2016)

    Book  Google Scholar 

  52. Reu, P.: All about speckles: speckle size measurement. ExT. 38(6), 1–2 (2014)

    Google Scholar 

  53. Reu, P.: All about speckles: aliasing. ExT. 38(5), 1–3 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding provided by the National Natural Science Foundation of China (Grant Nos. 12002244)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Yuan or Zuoqi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 460 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Zhang, Q., Li, X. et al. Effective Method for Measuring Shear Nonlinearity of Nanocomposites Using Digital Image Correlation. J Nondestruct Eval 40, 60 (2021). https://doi.org/10.1007/s10921-021-00790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00790-w

Keywords

Navigation