Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulation by radiotherapy in tumour control and normal tissue toxicity

Abstract

Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of acute and chronic effects of radiotherapy on tissue components.
Fig. 2: Radiotherapy-induced chronic inflammation and fibrosis of the lungs.
Fig. 3: Immune aspects of radiotherapy-induced chronic inflammation and intestinal damage.
Fig. 4: Potential homing signals regulating immune crosstalk between the mucosal sites of the lungs and gut.

Similar content being viewed by others

References

  1. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  2. Guipaud, O. et al. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br. J. Radiol. https://doi.org/10.1259/bjr.20170762 (2018). This article helps to understand the important role of endothelial signals in immune cell recruitment to irradiated tissues.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Romano, E., Honeychurch, J. & Illidge, T. M. Radiotherapy–immunotherapy combination: how will we bridge the gap between pre-clinical promise and effective clinical delivery? Cancers 13, 457 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rodríguez-Ruiz, M. E., Vanpouille-Box, C., Melero, I., Formenti, S. C. & Demaria, S. Immunological mechanisms responsible for radiation-induced abscopal effect. Trends Immunol. 39, 644–655 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Reynders, K., Illidge, T., Siva, S., Chang, J. Y. & De Ruysscher, D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat. Rev. 41, 503–510 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. De Ruysscher, D. et al. Radiotherapy toxicity. Nat. Rev. Dis. Prim. 5, 13 (2019). This review provides insight into immunological mechanisms of RT-induced toxicities in a clinical context.

    PubMed  Google Scholar 

  8. Montay-Gruel, P., Meziani, L., Yakkala, C. & Vozenin, M.-C. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br. J. Radiol. https://doi.org/10.1259/bjr.20180008 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Najafi, M. et al. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int. J. Radiat. Biol. 94, 335–356 (2018).

    CAS  PubMed  Google Scholar 

  10. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  11. Carvalho, H. & Villar, R. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics 73, e557s (2018).

    PubMed  Google Scholar 

  12. Dovedi, S. J. et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin. Cancer Res. 23, 5514–5526 (2017).

    CAS  PubMed  Google Scholar 

  13. Formenti, S. C. & Demaria, S. Systemic effects of local radiotherapy. Lancet Oncol. 10, 718–726 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Tsoutsou, P., Montay-Gruel, P. & Vozenin, M.-C. The era of modern radiation therapy: innovations to spare normal tissues. in Radiation Oncology (ed. Wenz, F.) 1–15 (Springer International Publishing, 2019).

  15. Ferreira, M. R., Muls, A., Dearnaley, D. P. & Andreyev, H. J. N. Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncol. 15, e139–e147 (2014).

    PubMed  Google Scholar 

  16. François, A., Milliat, F., Guipaud, O. & Benderitter, M. Inflammation and immunity in radiation damage to the gut mucosa. BioMed. Res. Int. 2013, 1–9 (2013).

    Google Scholar 

  17. Giuranno, L., Ient, J., De Ruysscher, D. & Vooijs, M. A. Radiation-induced lung injury (RILI). Front. Oncol. 9, 877 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Coates, P. J., Rundle, J. K., Lorimore, S. A. & Wright, E. G. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling. Cancer Res. 68, 450–456 (2008).

    CAS  PubMed  Google Scholar 

  19. Nikitaki, Z. et al. Systemic mechanisms and effects of ionizing radiation: a new ‘old’ paradigm of how the bystanders and distant can become the players. Semin. Cancer Biol. 37–38, 77–95 (2016).

    PubMed  Google Scholar 

  20. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    CAS  PubMed  Google Scholar 

  21. Cao, X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 16, 35–50 (2016).

    CAS  PubMed  Google Scholar 

  22. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Marki, A., Esko, J. D., Pries, A. R. & Ley, K. Role of the endothelial surface layer in neutrophil recruitment. J. Leukoc. Biol. 98, 503–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wirsdörfer, F., de Leve, S. & Jendrossek, V. Combining radiotherapy and immunotherapy in lung cancer: can we expect limitations due to altered normal tissue toxicity? Int. J. Mol. Sci. 20, 24 (2019).

    Google Scholar 

  26. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).

    CAS  PubMed  Google Scholar 

  27. Chiang, C.-S. et al. Irradiation promotes an M2 macrophage phenotype in tumor hypoxia. Front. Oncol. 2, 89 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Groves, A. M., Johnston, C. J., Misra, R. S., Williams, J. P. & Finkelstein, J. N. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol. 92, 754–765 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lierova, A. et al. Cytokines and radiation-induced pulmonary injuries. J. Radiat. Res. https://doi.org/10.1093/jrr/rry067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ong, Z. et al. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis. Radiat. Oncol. 5, 22 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Rubin, P., Johnston, C. J., Williams, J. P., McDonald, S. & Finkelstein, J. N. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int. J. Radiat. Oncol. 33, 99–109 (1995).

    CAS  Google Scholar 

  32. Schaue, D., Kachikwu, E. L. & McBride, W. H. Cytokines in radiobiological responses: a review. Radiat. Res. 178, 505–523 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. Connolly, K. A. et al. Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget 7, 86522–86535 (2016).

    PubMed  PubMed Central  Google Scholar 

  34. Fox, J., Gordon, J. R. & Haston, C. K. Combined CXCR1/CXCR2 antagonism decreases radiation-induced alveolitis in the mouse. Radiat. Res. 175, 657–664 (2011). Fox et al. (2011) and Yang et al. (2011) present preclinical evidence that targeting of chemokines and their receptors may be one of the approaches to mitigate RT-induced normal tissue toxicity.

    CAS  PubMed  Google Scholar 

  35. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    CAS  PubMed  Google Scholar 

  36. Yang, X. et al. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation–induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 45, 127–135 (2011).

    PubMed  Google Scholar 

  37. Barker, H. E., Paget, J. T. E., Khan, A. A. & Harrington, K. J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020).

    CAS  PubMed  Google Scholar 

  39. Heylmann, D., Rödel, F., Kindler, T. & Kaina, B. Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim. Biophys. Acta 1846, 121–129 (2014).

    CAS  PubMed  Google Scholar 

  40. Sia, J., Szmyd, R., Hau, E. & Gee, H. E. Molecular mechanisms of radiation-induced cancer cell death: a primer. Front. Cell Dev. Biol. 8, 41 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Heylmann, D., Badura, J., Becker, H., Fahrer, J. & Kaina, B. Sensitivity of CD3/CD28-stimulated versus non-stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in the differential radiation response. Cell Death Dis. 9, 1053 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Arina, A. et al. Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat. Commun. 10, 3959 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Wirsdörfer, F. & Jendrossek, V. The role of lymphocytes in radiotherapy-induced adverse late effects in the lung. Front. Immunol. 7, 591 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Qu, Y. et al. 2-Gy whole-body irradiation significantly alters the balance of CD4+CD25−T effector cells and CD4+CD25+Foxp3+T regulatory cells in mice. Cell. Mol. Immunol. 7, 419–427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Berte, N. et al. Impaired DNA repair in mouse monocytes compared to macrophages and precursors. DNA Repair. 98, 103037 (2021).

    CAS  PubMed  Google Scholar 

  46. Ponath, V. et al. Compromised DNA repair and signalling in human granulocytes. J. Innate Immun. 11, 74–85 (2019).

    CAS  PubMed  Google Scholar 

  47. Leblond, M. M. et al. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 8, 72597–72612 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Mollà, M. et al. Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int. J. Radiat. Oncol. 57, 264–273 (2003).

    Google Scholar 

  49. Bezu, L. et al. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol. 6, 187 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5, 403–416 (2014).

    PubMed  Google Scholar 

  51. Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331–342 (2005).

    CAS  PubMed  Google Scholar 

  52. Apetoh, L. et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    CAS  PubMed  Google Scholar 

  53. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    CAS  PubMed  Google Scholar 

  54. Formenti, S. C. & Demaria, S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. JNCI 105, 256–265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Groves, A. M., Johnston, C. J., Williams, J. P. & Finkelstein, J. N. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat. Res. 189, 300 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Triner, D. & Shah, Y. M. Hypoxia-inducible factors: a central link between inflammation and cancer. J. Clin. Invest. 126, 3689–3698 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Martinez-Zubiaurre, I., Chalmers, A. J. & Hellevik, T. Radiation-induced transformation of immunoregulatory networks in the tumor stroma. Front. Immunol. 9, 1679 (2018). This review collates the RT dose-dependent chronological effects on different components of tumour stroma and immune cells.

    PubMed  PubMed Central  Google Scholar 

  58. Jobling, M. F. et al. Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat. Res. 166, 839–848 (2006).

    CAS  PubMed  Google Scholar 

  59. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10 (2018).

    CAS  PubMed  Google Scholar 

  61. Farhood, B. et al. TGF-β in radiotherapy: mechanisms of tumor resistance and normal tissues injury. Pharmacol. Res. 155, 104745 (2020).

    CAS  PubMed  Google Scholar 

  62. Liang, H. et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat. Commun. 8, 1736 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Garner, H. & de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol. 20, 483–497 (2020).

    CAS  PubMed  Google Scholar 

  64. Mollica Poeta, V., Massara, M., Capucetti, A. & Bonecchi, R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 379 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Henry, C. B. S. & Duling, B. R. TNF-α increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279, H2815–H2823 (2000).

    CAS  PubMed  Google Scholar 

  66. Zheng, Y., Gao, W., Spratt, D. E., Sun, Y. & Xing, L. Management of gastrointestinal perforation related to radiation. Int. J. Clin. Oncol. 25, 1010–1015 (2020).

    PubMed  Google Scholar 

  67. Straub, J. M. et al. Radiation-induced fibrosis: mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 141, 1985–1994 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Andreyev, J. Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol. 8, 1007–1017 (2007).

    PubMed  Google Scholar 

  69. Henson, C. C. et al. Structured gastroenterological intervention and improved outcome for patients with chronic gastrointestinal symptoms following pelvic radiotherapy. Support. Care Cancer 21, 2255–2265 (2013).

    PubMed  Google Scholar 

  70. Schoenfeld, J. D. et al. Pneumonitis resulting from radiation and immune checkpoint blockade illustrates characteristic clinical, radiologic and circulating biomarker features. J. Immunother. Cancer 7, 112 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Bentzen, S. M. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer 6, 702–713 (2006).

    CAS  PubMed  Google Scholar 

  72. Nguyen, H. Q. et al. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit. Rev. Oncol. Hematol. 129, 13–26 (2018).

    PubMed  Google Scholar 

  73. Tabasso, A. F. S., Jones, D. J. L., Jones, G. D. D. & Macip, S. Radiotherapy-induced senescence and its effects on responses to treatment. Clin. Oncol. 31, 283–289 (2019).

    CAS  Google Scholar 

  74. Langhi Prata, L. G. P., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).

    Google Scholar 

  75. Wang, Z., Tang, Y., Tan, Y., Wei, Q. & Yu, W. Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities. Cell Commun. Signal. 17, 47 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Demaria, S. & Formenti, S. C. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front. Oncol. 2, 153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosenstein, B. S. Radiogenomics: identification of genomic predictors for radiation toxicity. Semin. Radiat. Oncol. 27, 300–309 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Enaud, R. et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 10, 9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ramírez-Labrada, A. G. et al. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 6, 86–97 (2020).

    PubMed  Google Scholar 

  80. Meziani, L. et al. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages. Eur. Respir. J. 51, 1702120 (2018).

    PubMed  Google Scholar 

  81. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dyer, D. P. et al. Chemokine receptor redundancy and specificity are context dependent. Immunity 50, 378–389.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chung, S. I. et al. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep. 6, 39714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wirsdörfer, F. & Jendrossek, V. Modeling DNA damage-induced pneumopathy in mice: insight from danger signaling cascades. Radiat. Oncol. 12, 142 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Lawrie, T. A. et al. Interventions to reduce acute and late adverse gastrointestinal effects of pelvic radiotherapy for primary pelvic cancers. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD012529.pub2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kumagai, T., Rahman, F. & Smith, A. The microbiome and radiation induced-bowel injury: evidence for potential mechanistic role in disease pathogenesis. Nutrients 10, 1405 (2018).

    PubMed Central  Google Scholar 

  87. Booth, C. & Potten, C. S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Malipatlolla, D. K. et al. Long-term mucosal injury and repair in a murine model of pelvic radiotherapy. Sci. Rep. 9, 13803 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Ferreira, M. R. et al. Microbiota-and radiotherapy-induced gastrointestinal side-effects (MARS) study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin. Cancer Res. 25, 6487–6500 (2019).

    CAS  Google Scholar 

  90. Vozenin-Brotons, M.-C. et al. Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization. Radiat. Res. 161, 299–311 (2004).

    CAS  PubMed  Google Scholar 

  91. Blirando, K. et al. Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am. J. Pathol. 178, 640–651 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Dyer, D. P. et al. CXCR2 deficient mice display macrophage-dependent exaggerated acute inflammatory responses. Sci. Rep. 7, 42681 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, J. et al. Palmitoylethanolamide regulates development of intestinal radiation injury in a mast cell-dependent manner. Dig. Dis. Sci. 59, 2693–2703 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Takemura, N. et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 10, eaan0333 (2018).

    PubMed  Google Scholar 

  95. Kim, H. J. & Jung, Y. The emerging role of eosinophils as multifunctional leukocytes in health and disease. Immune Netw. 20, e24 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Grémy, O., Benderitter, M. & Linard, C. Acute and persisting Th2-like immune response after fractionated colorectal γ-irradiation. World J. Gastroenterol. 14, 7075 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Wang, J., Zheng, H., Sung, C.-C., Richter, K. K. & Hauer-Jensen, M. Cellular sources of transforming growth factor-β isoforms in early and chronic radiation enteropathy. Am. J. Pathol. 153, 1531–1540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Stansborough, R. L. et al. Matrix metalloproteinase expression is altered in the small and large intestine following fractionated radiation in vivo. Support. Care Cancer 26, 3873–3882 (2018).

    PubMed  Google Scholar 

  100. Vujaskovic, Z. et al. Radiation-induced hypoxia may perpetuate late normal tissue injury. Int. J. Radiat. Oncol. 50, 851–855 (2001).

    CAS  Google Scholar 

  101. Toullec, A. et al. HIF-1α deletion in the endothelium, but not in the epithelium, protects from radiation-induced enteritis. Cell. Mol. Gastroenterol. Hepatol. 5, 15–30 (2018).

    PubMed  Google Scholar 

  102. Uribe-Herranz, M. et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130, 466–479 (2019). This work illustrates that the intestinal microbiota drives the DC–CTL–IFNγ axis, enhancing RT-induced tumour control at primary and secondary tumour sites.

    PubMed Central  Google Scholar 

  103. Wang, Z. et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J. Cell. Mol. Med. 23, 3747–3756 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Anand, S. & Mande, S. S. Diet, microbiota and gut-lung connection. Front. Microbiol. 9, 2147 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 12, 843–850 (2019).

    CAS  PubMed  Google Scholar 

  106. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008).

    CAS  PubMed  Google Scholar 

  107. Gerassy-Vainberg, S. et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut 67, 97–107 (2018).

    CAS  PubMed  Google Scholar 

  108. Cui, M. et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med. 9, 448–461 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bingula, R. et al. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J. Oncol. 2017, 1–15 (2017).

    Google Scholar 

  110. Tulic, M. K., Piche, T. & Verhasselt, V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin. Exp. Allergy 46, 519–528 (2016).

    CAS  PubMed  Google Scholar 

  111. Wang, J. et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell–dependent inflammation. J. Exp. Med. 211, 2397–2410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shibaki, R., Akamatsu, H., Fujimoto, M., Koh, Y. & Yamamoto, N. Nivolumab induced radiation recall pneumonitis after two years of radiotherapy. Ann. Oncol. 28, 1404–1405 (2017).

    CAS  PubMed  Google Scholar 

  113. Budden, K. F. et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat. Rev. Microbiol. 15, 55–63 (2017).

    CAS  PubMed  Google Scholar 

  114. Dyer, D. P., Salanga, C. L., Volkman, B. F., Kawamura, T. & Handel, T. M. The dependence of chemokine–glycosaminoglycan interactions on chemokine oligomerization. Glycobiology https://doi.org/10.1093/glycob/cwv100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. McGhee, J. R. & Fujihashi, K. Inside the mucosal immune system. PLoS Biol. 10, e1001397 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Seong, Y. et al. Trafficking receptor signatures define blood plasmablasts responding to tissue-specific immune challenge. JCI Insight 2, e90233 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Mikhak, Z., Strassner, J. P. & Luster, A. D. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 210, 1855–1869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruane, D. et al. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J. Exp. Med. 210, 1871–1888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, H. et al. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur. J. Med. Chem. 191, 112154 (2020).

    CAS  PubMed  Google Scholar 

  120. Ihara, S., Hirata, Y. & Koike, K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. J. Gastroenterol. 52, 777–787 (2017).

    CAS  PubMed  Google Scholar 

  121. Kelly, A. et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8–mediated TGFβ activation. J. Exp. Med. 215, 2725–2736 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Puthawala, K. et al. Inhibition of integrin αvβ6, an activator of latent transforming growth factor-β, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008). This report shows evidence that targeting an activator of TGFβ (integrin αVβ6) provides protection from RT-induced fibrosis of the lung.

    CAS  PubMed  Google Scholar 

  123. Dyer, D. P. Understanding the mechanisms that facilitate specificity, not redundancy, of chemokine-mediated leukocyte recruitment. Immunology 160, 336–344 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tree, A. C. et al. Dose-limiting urinary toxicity with pembrolizumab combined with weekly hypofractionated radiation therapy in bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 101, 1168–1171 (2018).

    CAS  PubMed  Google Scholar 

  125. Bertho, A. et al. Preclinical model of stereotactic ablative lung irradiation using arc delivery in the mouse: effect of beam size changes and dose effect at constant collimation. Int. J. Radiat. Oncol. 107, 548–562 (2020).

    Google Scholar 

  126. Barsoumian, H. B. et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J. Immunother. Cancer 8, e000537 (2020).

    PubMed  PubMed Central  Google Scholar 

  127. Symonds, P. & Jones, G. D. D. FLASH radiotherapy: the next technological advance in radiation therapy? Clin. Oncol. 31, 405–406 (2019).

    CAS  Google Scholar 

  128. Chuah, S. & Chew, V. High-dimensional immune-profiling in cancer: implications for immunotherapy. J. Immunother. Cancer 8, e000363 (2020).

    PubMed  PubMed Central  Google Scholar 

  129. Al-Shafa, F., Arifin, A. J., Rodrigues, G. B., Palma, D. A. & Louie, A. V. A review of ongoing trials of stereotactic ablative radiotherapy for oligometastatic cancers: where will the evidence lead? Front. Oncol. 9, 543 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Genard, G., Lucas, S. & Michiels, C. Reprogramming of tumor-associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front. Immunol. 8, e90233 (2017).

    Google Scholar 

  131. Colton, M., Cheadle, E. J., Honeychurch, J. & Illidge, T. M. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat. Oncol. Lond. Engl. 15, 254 (2020).

    Google Scholar 

  132. Genard, G. et al. Proton irradiation orchestrates macrophage reprogramming through NFκB signaling. Cell Death Dis. 9, 1–13 (2018).

    CAS  Google Scholar 

  133. Harrell, C. R. et al. Molecular mechanisms underlying therapeutic potential of pericytes. J. Biomed. Sci. 25, 21 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Shu, H.-K. G. et al. Inhibition of the CXCL12/CXCR4axis as preventive therapy for radiation-induced pulmonary fibrosis. PLoS ONE 8, e79768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ma, W. et al. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol. 10, 1050 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jaillet, C. et al. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci. Rep. 7, 5290 (2017).

    PubMed  PubMed Central  Google Scholar 

  138. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McEntee, C. P., Gunaltay, S. & Travis, M. A. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 160, 139–148 (2020).

    CAS  PubMed  Google Scholar 

  140. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    CAS  PubMed  Google Scholar 

  141. Stansborough, R. L. et al. Vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFβ), angiostatin, and endostatin are increased in radiotherapy-induced gastrointestinal toxicity. Int. J. Radiat. Biol. 94, 645–655 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

U.M.C., K.J.W., T.M.I. and J.H. are supported by Cancer Research UK via RadNet Manchester (C19941/A28701). K.J.W. and T.M.I. are also supported by Cancer Research UK via the Cancer Research UK Manchester Centre (C147/A25254), and T.M.I. and J.H. are also supported by a Cancer Research UK Programme Grant (C431/A28280). T.M.I. is also supported by the NIHR Manchester Biomedical Research Centre (NIHR-BRC-1215-20007). M.A.T. is funded by the UK Biotechnology and Biological Sciences Research Council, the UK Medical Research Council, the Kenneth Rainin Foundation and the UK Defence Science and Technology Laboratory. D.P.D. is supported by the Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (218570/Z/19/Z). The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, is supported by core funding from the Wellcome Trust (203128/Z/16/Z).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the discussion of the content, the writing of the article and the review and/or editing of the manuscript.

Corresponding authors

Correspondence to Urszula M. Cytlak, Mark A. Travis or Timothy M. Illidge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks J. Finkelstein, F. Milliat and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Tumour microenvironment

(TME). A tumour-associated niche made up of a collection of stromal cells comprised of immune cells, endothelial cells and fibroblasts, structural components like extracellular matrix as well as signalling components including cytokines, chemokines and growth factors.

Abscopal responses

Systemic immune responses that are triggered following radiotherapy applied to a local tumour site. Such responses are believed to be propagated mainly by dendritic cell and CD8+ T cell responses, and lead to control of secondary tumour at distal tissue sites outside the initial radiotherapy area.

Immune checkpoint inhibitors

Clinically used monoclonal antibodies targeting specific regulatory immune cell receptors that are important for maintaining self-tolerance and limiting inflammatory responses. Certain cancer cells use these so-called checkpoint immune pathways to evade host immunity. The main immune checkpoint inhibitors used as anticancer immunotherapy target cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD1) or its ligand (PDL1).

Sterile inflammation

An inflammation induced in the absence of a pathogenic threat, instead being triggered by tissue damage and release of danger-associated molecular patterns (DAMPs). Release of DAMPs leads to recruitment of immune cells, which are required to clear damaged cells and initiate the tissue repair. Sometimes, sterile inflammation might become excessive and result in pathology, like in radiotherapy-induced damage and breakdown of mucosal barriers.

RT-induced cell death

Following exposure to ionizing radiation, cells can undergo cellular death primarily due to DNA damage. Different types of radiotherapy (RT)-induced cell death are described for different types of cells and cancers depending on their molecular profile. These include death by necrosis, apoptosis or autophagy. Importantly, each of these types of death has the ability to initiate a cascade of immune signalling following the release of damage-associated molecular patterns.

M1-like macrophage phenotype or an M2-like macrophage phenotype

‘M1’ and ‘M2’ are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when ‘classically’ activated with interferon-γ (IFNγ) and lipopolysaccharide) or anti-inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), respectively. However, macrophages in vivo are highly specialized and heterogeneous with regard to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. Therefore, the M1–M2 classification is too simplistic to explain the true nature of macrophages in vivo, although these terms are still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory.

NLRP3 inflammasome

An important regulator of inflammatory responses that can be triggered by a wide range of danger and inflammatory stimuli. This intracellular multimolecular complex acts via the activation of caspases leading to secretion of the pro-inflammatory cytokines IL-1β and IL-18.

Cancer-associated fibroblasts

A heterogeneous group of mesenchymal cells found in the tumour microenvironment that have crucial roles in tumour initiation, progression and metastasis. They can inhibit antitumour immunity by expressing immune checkpoint molecules and by supporting regulatory T cell responses in tumours.

Myeloid-derived suppressor cells

A type of myeloid cells that can be attracted to the tumour microenvironment. These cells often have an immunosuppressive phenotype and provide the tumour with protection from host immunity by hindering antitumour effector T cell responses. The myeloid-derived suppressor cells can be of monocytic phenotype (CD11b+LY6C+GR1+ in mice and CD11b+CD14+CD15HLA-DRlow in humans) or granulocytic/polymorphonuclear phenotype (CD11b+LY6G+GR1+ in mice and CD11b+CD14CD15+ in humans).

Endothelial-to-mesenchymal transition

A process that together with epithelial-to-mesenchymal transition is the driver of endothelial and epithelial progenitor and mesenchymal stem cell differentiation into myofibroblasts in response to either endothelial or epithelial signals as part of normal wound healing of these two barrier sites. Both endothelial-to-mesenchymal transition and epithelial-to-mesenchymal transition can be accelerated by radiotherapy and transforming growth factor-β (TGFβ) and are implicated in the late normal tissue toxicity and fibrosis of irradiated organs.

Clinical target volume

A volume of a tissue or organ that contains the clinically visible area of the gross tumour volume or subclinical malignant growth with a small area of surrounding normal tissue. Radiotherapy is directed to the clinical target volume rather than just the gross tumour volume to ensure the best tumour control. In certain cases, such a clinical target volume will encompass the primary tumour and the local draining lymph nodes.

Mitotic catastrophe and delayed cell senescence

Mitotic catastrophe is a type of radiotherapy-induced cell death in which the cell prematurely enters mitosis or is trapped in a cell cycle arrest for a prolonged time. The resultant aberrant mitosis or ‘delayed senescence’ leads to cells that are still metabolically active but can acquire chromosomal aberrations or a pro-inflammatory phenotype (senescence-associated secretory phenotype) or even leads to the development of secondary cancerous sites, and thus contributes to long-term irradiation toxicity. Some cells trapped in these states will die over time via one of the cellular death pathways (necrosis, apoptosis or autophagy). The full mechanism and the extent of deleterious effects following these cellular arrests remain unknown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cytlak, U.M., Dyer, D.P., Honeychurch, J. et al. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 22, 124–138 (2022). https://doi.org/10.1038/s41577-021-00568-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00568-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing