Skip to main content
Log in

Numerical study of nonlinear interactions of bi-chromatic progressive deep-water waves

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

This paper proposes a 3-D non-hydrostatic free surface flow model with a newly proposed general boundary-fitted grid system to simulate the nonlinear interactions of the bi-chromatic deep-water gravity waves. First, the monochromatic bidirectional and bi-chromatic bidirectional waves of small wave steepness are successively simulated to verify the abilities of the numerical model. Then, a series of bi-chromatic progressive waves of moderate wave steepness and different crossing angles are simulated and analyzed in detail. It is found that if the crossing angle is close to or smaller than the resonant angle, apparent discrepancies are observed among the numerical results, the linear wave theory, and the steady third-order theory. Otherwise, the three solutions coincide well. Through analysis, it is concluded that the discrepancies are caused by the third-order quasi-resonant interactions between the bi-chromatic progressive waves. Such interactions not only could modify the wave spectrum, but could also change the wave shape patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimmoun O., Branger H., Kharif C. On short-crested waves: Experimental and analytical investigations [J]. European Journal of Mechanics-B/Fluids, 1999, 18(5): 889–930.

    Article  MathSciNet  Google Scholar 

  2. Fuchs R. A. On the theory of short-crested oscillatory waves. Gravity waves [R]. National Bureau of Standards Circular 521, Washington DC, USA: U. S. Government Printing Office, 1952, 187–200.

    Google Scholar 

  3. Hsu J. R. C., Tsuchiya Y., Silvester R. Third-order approximation to short-crested waves [J]. Journal of Fluid Mechanics, 1979, 90: 179–196.

    Article  Google Scholar 

  4. Craig W., Nicholls D. P. Traveling gravity water waves in two and three dimensions [J]. European Journal of Mechanics-B/Fluids, 2002, 21(6): 615–641.

    Article  MathSciNet  Google Scholar 

  5. Nicholls D. P., Reitich F. Stable, high-order computation of traveling water waves in three dimensions [J]. European Journal of Mechanics-B/Fluids, 2006, 25(4): 406–424.

    Article  MathSciNet  Google Scholar 

  6. Fuhrman D. R., Madsen P. A. Short-crested waves in deep water: A numerical investigation of recent laboratory experiments [J]. Journal of Fluid Mechanics, 2006, 559: 391–411.

    Article  MathSciNet  Google Scholar 

  7. Hammack J. L., Henderson D. M., Segur H. Progressive waves with persistent two-dimensional surface patterns in deep water [J]. Journal of Fluid Mechanics, 2005, 532: 1–52.

    Article  MathSciNet  Google Scholar 

  8. Henderson D. M., Patterson M. S., Segur H. On the laboratory generation of two-dimensional, progressive, surface waves of nearly permanent form on deep water [J]. Journal of Fluid Mechanics, 2006, 559: 413–427.

    Article  Google Scholar 

  9. Le Mehaute B. On the highest periodic short-crested wave [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1986, 112: 320–330.

    Article  Google Scholar 

  10. Longuet-Higgins M. S., Phillips O. M. Phase velocity effects in tertiary wave interactions [J]. Journal of Fluid Mechanics, 1962, 12: 333–336.

    Article  MathSciNet  Google Scholar 

  11. Sharma N., Dean R. G. Second-order directional seas and associated wave forces [J]. Journal of Petroleum Science and Engineering, 1981, 21(1): 129–140.

    Article  Google Scholar 

  12. Madsen P. A., Fuhrman D. R. Third-order theory for bichromatic bi-directional water waves [J]. Journal of Fluid Mechanics, 2006, 557: 369–397.

    Article  MathSciNet  Google Scholar 

  13. Phillips O. M. On the dynamics of unsteady gravity waves of finite amplitude I. The elementary interactions [J]. Journal of Fluid Mechanics, 1960, 9: 193–217.

    Article  MathSciNet  Google Scholar 

  14. Longuet-Higgins M. S. Resonant interactions between two trains of gravity waves [J]. Journal of Fluid Mechanics, 1962, 12: 321–332.

    Article  MathSciNet  Google Scholar 

  15. Longuet-Higgins M. S., Smith N. D. An experiment on third-order wave interactions [J]. Journal of Fluid Mechanics, 1966, 25: 417–435.

    Article  Google Scholar 

  16. Mcgoldrick L. F., Phillips O. M., Huang N. E. et al. Measurements of third-order resonant wave interactions [J]. Journal of Fluid Mechanics, 1966, 25: 437–456.

    Article  Google Scholar 

  17. Bonnefoy F., Haudin F., Michel G. et al. Observation of resonant interactions among surface gravity waves [J]. Journal of Fluid Mechanics, 2016, 805: R3.

    Article  MathSciNet  Google Scholar 

  18. Madsen P. A., Fuhrman D. R. Third-order theory for multi-directional irregular waves [J]. Journal of Fluid Mechanics, 2012, 698: 304–334.

    Article  MathSciNet  Google Scholar 

  19. Stelling G., Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation [J]. International Journal for Numerical Methods in Fluids, 2003, 43(1): 1–23.

    Article  MathSciNet  Google Scholar 

  20. Ai C., Jin S., Lv B. A new fully non-hydrostatic 3D free surface flow model for water wave motions [J]. International Journal for Numerical Methods in Fluids, 2011, 66(11): 1354–1370.

    Article  MathSciNet  Google Scholar 

  21. Ai C., Ding W., Jin S. A general boundary-fitted 3D non-hydrostatic model for nonlinear focusing wave groups [J]. Ocean Engineering, 2014, 89: 134–145.

    Article  Google Scholar 

  22. Mori N., Onorato M., Janssen P. et al. On the extreme statistics of long-crested deep water waves: Theory and experiments [J]. Journal of Geophysical Research, 2007, 112: C09011.

    Google Scholar 

  23. Waseda T., Kinoshita T., Tamura H. Evolution of a random directional wave and freak wave occurrence [J]. Journal of Physical Oceanography, 2009, 39(3): 621–639.

    Article  Google Scholar 

  24. Waseda T., Kinoshita T., Tamura H. Interplay of resonant and quasi-resonant interaction of the directional ocean waves [J]. Journal of Physical Oceanography, 2009, 39(9): 2351–2362.

    Article  Google Scholar 

  25. Beji S. Nonlinear wave transforms and randomness [J]. Coastal Engineering Journal, 2019, 61: 590–598.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Liaoning Revitalization Talents Program (Grant No. XLYC1807010), the Fundamental Research Funds for the Central Universities (Grant No. DUT2019TB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-zhou Ma.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51720105010, 51979029 and 51679031).

Biography: Jian-jian Xie (1983-), Female, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Jj., Ma, Yx., Dong, Gh. et al. Numerical study of nonlinear interactions of bi-chromatic progressive deep-water waves. J Hydrodyn 33, 602–620 (2021). https://doi.org/10.1007/s42241-021-0047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0047-3

Key words

Navigation