Skip to main content
Log in

Exponential Attractor for the Viscoelastic Wave Model with Time-Dependent Memory Kernels

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The paper is concerned with the exponential attractors for the viscoelastic wave model in \(\varOmega \subset \mathbb R^3\):

$$\begin{aligned} u_{tt}-h_t(0)\varDelta u-\int _0^\infty \partial _sh_t(s)\varDelta u(t-s)\mathrm ds+f(u)=g, \end{aligned}$$

with time-dependent memory kernel \(h_t(\cdot )\) which is used to model aging phenomena of the material. Conti et al. (Am J Math 140(2):349–389, 2018a; Am J Math 140(6):1687–1729, 2018b) recently provided the correct mathematical setting for the model and a well-posedness result within the novel theory of dynamical systems acting on time-dependent spaces, recently established by Conti et al. (J Differ Equ 255:1254–1277, 2013), and proved the existence and the regularity of the time-dependent global attractor. In this work, we further study the existence of the time-dependent exponential attractors as well as their regularity. We establish an abstract existence criterion via quasi-stability method introduced originally by Chueshov and Lasiecka (J Dyn Differ Equ 16:469–512, 2004), and on the basis of the theory and technique developed in Conti et al. (2018a, b) we further provide a new method to overcome the difficulty of the lack of further regularity to show the existence of the time-dependent exponential attractor. And these techniques can be used to tackle other hyperbolic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chepyzhov, V.V., Conti, M., Pata, V.: A minimal approach to the theory of global attractor. Discrete Contin. Dyn. Syst. 32, 2079–2088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chueshov, I., Lasiecka, I.: Attractors for second order evolution equations with nonlinear damping. J. Dyn. Differ. Equ. 16, 469–512 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS 912. Amer. Math. Soc, Providence (2008)

    MATH  Google Scholar 

  4. Chueshov, I.: Dynamics of Quasi-stable Dissipative Systems. Springer, New York (2015)

    Book  MATH  Google Scholar 

  5. Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1982)

    Google Scholar 

  6. Conti, M., Pata, V., Temam, R.: Attractors for the processes on time-dependent spaces. Application to wave equations. J. Differ. Equ. 255, 1254–1277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conti, M., Danese, V., Giorgi, C., Pata, V.: A model of viscoelasticity with time-dependent memory kernels. Am. J. Math. 140(2), 349–389 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conti, M., Danese, V., Pata, V.: Viscoelasticity with time-dependent memory kernels, II: asymptotical behavior of solutions. Am. J. Math. 140(6), 1687–1729 (2018)

    Article  MATH  Google Scholar 

  9. Danese, V., Geredeli, P.G., Pata, V.: Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete Contin. Dyn. Syst. 35(7), 2881–2904 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dafermos, C.M.: Contraction semigroups and trend to equilibrium in continuum mechanics. In: Germain, P., Nayroles, B. (eds.) Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics 503, pp. 295–306. Springer, Berlin (1976)

    Google Scholar 

  12. Dell’Oro, F., Pata, V.: Long-term analysis of strongly damped nonlinear wave equations. Nonlinearity 24, 3413–3435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Exponential Attractors for Dissipative Evolution Equations. Masson, Paris (1994)

    MATH  Google Scholar 

  14. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a nonlinear reaction-diffusion system in \(\mathbb{R}^3\). C. R. Acad. Sci. Paris Sér. I Math. 330, 713–718 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems. Proc. R. Soc. Edinb. Sect. A 13, 703–730 (2005)

    Article  MATH  Google Scholar 

  16. Fabrizio, M., Lazzari, B.: On the existence and asymptotic stability of solutions for linear viscoelastic solids. Arch. Rational Mech. Anal. 116, 139–152 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabrizio, M., Morro, A.: Mathematical problems in linear viscoelasticity. SIAM Stud. Appl. Math. 12 (1992)

  18. Giorgi, C., Lazzari, B.: On the stability for linear viscoelastic solids. Q. Appl. Math. 55, 659–675 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalantarov, V.K.: Attractors for some nonlinear problems of mathematical physics. J. Soviet Math. 40, 619–622 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Zheng, S.: On the exponential stability of linear viscoelasticity and thermoviscoelasticity. Quart. Appl. Math. 54, 21–31 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  22. Muñoz Rivera, J.E.: Asymptotic behaviour in linear viscoelasticity. Q. Appl. Math. 52, 629–648 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Di Plinio, F., Duane, G.S., Temam, R.: Time dependent attractor for the oscillon equation. Discrete Contin. Dyn. Syst. 29, 141–167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Longman Scientific & Technical, New York (1987)

    MATH  Google Scholar 

  25. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Math. Pura Appl. 146, 65–96 (1986)

    Article  MATH  Google Scholar 

  26. Yang, Z.J., Li, Y.N.: Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models. Discrete Contin. Dyn. Syst. 38, 2629–2653 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewer for his/her valuable comments and suggestions which helped improving the original manuscript. Supported by National Natural Science Foundation of China (Grant No. 11671367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Z. Exponential Attractor for the Viscoelastic Wave Model with Time-Dependent Memory Kernels. J Dyn Diff Equat 35, 679–707 (2023). https://doi.org/10.1007/s10884-021-10035-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10035-z

Keywords

Mathematics Subject Classification

Navigation