Skip to main content
Log in

Large Deviation Principle for McKean–Vlasov Quasilinear Stochastic Evolution Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is devoted to investigating the Freidlin–Wentzell’s large deviation principle for a class of McKean–Vlasov quasilinear SPDEs perturbed by small multiplicative noise. We adopt the variational framework and the modified weak convergence criteria to prove the Laplace principle for McKean–Vlasov type SPDEs, which is equivalent to the large deviation principle. Moreover, we do not assume any compactness condition of embedding in the Gelfand triple to handle both the cases of bounded and unbounded domains in applications. The main results can be applied to various McKean–Vlasov type SPDEs such as distribution dependent stochastic porous media type equations and stochastic p-Laplace type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azencott, R.: Grandes déviations et applications. Eighth Saint Flour Probability Summer School-1978. Saint Flour, Lecture Notes in Math., vol. 774. Springer, Berlin 1980, 1–176 (1978)

  2. Budhiraja, A., Chen, J., Dupuis, P.: Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stochastic Process. Appl. 123, 523–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390–1420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Large deviations and transitions between equilibria for stochastic Landau–Lifshitz–Gilbert equation. Arch. Ration. Mech. Anal. 226, 497–558 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bessaih, H., Millet, A.: Large deviation principle and inviscid shell models. Electron. J. Probab. 14, 2551–2579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu, V., Röckner, M.: Solutions for nonlinear Fokker–Planck equations with measures as initial data and McKean–Vlasov equations. J. Funct. Anal. 280, 108926 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbu, V., Röckner, M.: From non-linear Fokker–Planck equations to solutions of distribution dependent SDE. Ann. Probab. 48, 1902–1920 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu, V., Röckner, M.: Probabilistic representation for solutions to non-linear Fokker–Planck equations. SIAM J. Math. Anal. 50, 4246–4260 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Comman, H.: Criteria for large deviations. Trans. Am. Math. Soc. 355, 2905–2923 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cerrai, S., Röckner, M.: Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab. 32, 1100–1139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Gao, H.: Well-posedness and large deviations for a class of SPDEs with Lévy noise. J. Differ. Equ. 263, 5216–5252 (2017)

    Article  MATH  Google Scholar 

  14. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dupuis, P., Ellis, R.: A weak convergence approach to the theory of large deviations. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  16. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  17. Dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin–Wentzell LDPs in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29, 1487–1540 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Dong, Z., Wu, J.-L., Zhang, R., Zhang, T.: Large deviation principles for first-order scalar conservation laws with stochastic forcing. Ann. Appl. Probab. 30, 324–367 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  20. Freidlin, M.I.: Random perturbations of reaction-diffusion equations: the quasi-deterministic approximations. Trans. Am. Math. Soc. 305, 665–697 (1988)

    MATH  Google Scholar 

  21. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Translated from the Russian by Joseph Szücs. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260. Springer-Verlag, New York (1984)

  22. Herrmann, S., Imkeller, P., Peithmann, D.: Large deviations and a Kramers’ type law for selfstabilizing diffusions. Ann. Appl. Probab. 18, 1379–1423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hong, W., Liu, W.: Distribution dependent stochastic porous media type equations on general measure spaces. arXiv:2103.10135v1

  24. Huang, X., Ren, P., Wang, F.-Y.: Distribution dependent stochastic differential equations. Front. Math. China 16, 257–301 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, X., Röckner, M., Wang, F.-Y.: Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discret. Contin. Dyn. Syst. 39, 3017–3035 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, X., Song, Y.: Well-posedness and regularity for distribution dependent SPDEs with singular drifts. Nonlinear Anal. 203, 112167 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, X., Wang, F.-Y.: Distribution dependent SDEs with singular coefficients. Stochastic Process. Appl. 129, 4747–4770 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University California Press, Berkeley (1956)

  29. Khasminskii, R.Z.: On an averging principle for Itô stochastic differential equations. Kibernetica 4, 260–279 (1968)

    Google Scholar 

  30. Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61, 27–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext, Springer, New York (2015)

    Book  MATH  Google Scholar 

  32. Liu, W., Song, Y., Zhai, J., Zhang, T.: Large and moderate deviation principles for McKean–Vlasov SDEs with jumps. arXiv:2011.08403v1

  33. Manna, U., Sritharan, S.S., Sundar, P.: Large deviations for the stochastic shell model of turbulence. NoDEA Nonlinear Differ. Equ. Appl. 16, 493–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Matoussi, A., Sabbagh, W., Zhang, T.: Large deviation principles of obstacle problems for quasilinear stochastic PDEs. Appl. Math. Optim. 83, 849–879 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. McKean, H.P.: Propagation of chaos for a class of nonlinear parabolic equations. Lect. Ser. Differ. Equ. 7, 41–57 (1967)

    Google Scholar 

  36. Peszat, S.: Large deviation principle for stochastic evolution equations. Probab. Theory Relat. Fields. 98, 113–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ren, P., Tang, H., Wang, F.-Y.: Distribution-path dependent nonlinear SPDEs with application to stochastic transport type equations. arXiv:2007.09188v3

  38. Ren, P., Wang, F.-Y.: Donsker–Varadhan large deviations for path-distribution dependent SPDEs. J. Math. Anal. Appl. 499, 125000 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ren, P., Wang, F.-Y.: Bismut formula for Lions derivative of distribution dependent SDEs and applications. J. Differ. Equ. 267, 4745–4777 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Röckner, M., Wang, F.-Y., Wu, L.: Large deviations for stochastic generalized porous media equations. Stochastic Process. Appl. 116, 1677–1689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Röckner, M., Zhang, T.S., Zhang, X.: Large deviations for stochastic tamed 3D Navier–Stokes equations. Appl. Math. Optim. 61, 267–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ren, J., Zhang, X.: Freidlin–Wentzell’s large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148–3172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stroock, D.W.: An Introduction to the Theory of Large Deviations. Spring-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  44. Sritharan, S.S., Sundar, P.: Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise. Stoch. Process. Appl. 116, 1636–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Varadhan, S.R.S.: Large deviations and Applications. CBMS-NSF Series in Applied Mathematics, vol. 46. SIAM, Philadelphia (1984)

    Book  MATH  Google Scholar 

  46. Wang, F.-Y.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128, 595–621 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xiong, J., Zhai, J.: Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli 24, 2842–2874 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeidler, E.: Nonlinear Functional Analysis and its Applications. Nonlinear Monotone Operators, Springer-Verlag, New York (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their very constructive suggestions and valuable comments. The research of S. Li is supported by NSFC (No. 12001247), NSF of Jiangsu Province (No. BK20201019), NSF of Jiangsu Higher Education Institutions of China (No. 20KJB110015) and the Foundation of Jiangsu Normal University (No. 19XSRX023). The research of W. Liu is supported by NSFC (No. 11822106, 11831014, 12090011) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Li, S. & Liu, W. Large Deviation Principle for McKean–Vlasov Quasilinear Stochastic Evolution Equations. Appl Math Optim 84 (Suppl 1), 1119–1147 (2021). https://doi.org/10.1007/s00245-021-09796-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09796-2

Keywords

Mathematics Subject Classification

Navigation