Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species

Abstract

Globally, water disinfection is reliant on chlorination, but requires a route that avoids the formation of chemical residues. Hydrogen peroxide, a broad-spectrum biocide, can offer such an alternative, but is typically less effective than traditional approaches to water remediation. Here, we show that the reactive oxygen species—which include hydroxyl, hydroperoxyl and superoxide radicals—formed over a AuPd catalyst during the synthesis of hydrogen peroxide from hydrogen and air are over 107 times more potent than an equivalent amount of preformed hydrogen peroxide and over 108 times more effective than chlorination under equivalent conditions. The key to bactericidal and virucidal efficacy is the radical flux that forms when hydrogen and oxygen are activated on the catalyst. This approach could form the basis of an alternative method for water disinfection, particularly in communities not currently served by traditional means of water remediation or where access to potable water is scarce.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of key reactive oxygen species responsible for the treatment of greywater pathogens.
Fig. 2: Comparison of microbiocidal efficacy using conventional disinfection agents and in situ H2O2 production.
Fig. 3: Catalyst performance and correlation between reactive oxygen species concentration and bactericidal efficacy.
Fig. 4: AuPd catalyst structure and morphology.
Fig. 5: Catalytic stability over increasing concentrations of bacteria.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information or from the authors upon reasonable request, with the underlying data found at the Cardiff University Data Repository via https://doi.org/10.17035/d.2021.0132824835. Source data are provided with this paper.

References

  1. Lewis, R. J. & Hutchings, G. J. Recent advances in the direct synthesis of H2O2. ChemCatChem 11, 298–308 (2019).

    Article  CAS  Google Scholar 

  2. Freakley, S. J. et al. Palladium–tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Wilson, N. M., Priyadarshini, P., Kunz, S. & Flaherty, D. W. Direct synthesis of H2O2 on Pd and AuxPd1 clusters: understanding the effects of alloying Pd with Au. J. Catal. 357, 163–175 (2018).

    Article  CAS  Google Scholar 

  4. Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Edwards, J. K. et al. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2 supported Au–Pd catalysts. J. Catal. 236, 69–79 (2005).

    Article  CAS  Google Scholar 

  6. Ntainjua, E. N. et al. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chem. 10, 1162–1169 (2008).

    Article  CAS  Google Scholar 

  7. Pritchard, J. et al. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au–Pd catalysts prepared by sol immobilization. Langmuir 26, 16568–16577 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, N. M. & Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid–solid interface. J. Am. Chem. Soc. 138, 574–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J., Ishihara, T. & Yoshizawa, K. Theoretical revisit of the direct synthesis of H2O2 on Pd and Au@Pd surfaces: a comprehensive mechanistic study. J. Phys. Chem. C 115, 25359–25367 (2011).

    Article  CAS  Google Scholar 

  10. Climate Change and Water United Nations Water Policy Brief (2019); https://www.unwater.org/publications/un-water-policy-brief-on-climate-change-and-water/

  11. Larsen, T. A., Hoffmann, S., Luthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Li, H., Zhu, X. & Ni, J. Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection. Electrochim. Acta 56, 9789–9796 (2011).

    Article  CAS  Google Scholar 

  14. Nieuwenhuijsen, M. J., Toledano, M. B., Eaton, N. E., Fawell, J. & Elliott, P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup. Environ. Med 57, 73–85 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, X. et al. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Res. 92, 164–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie, Y. Disinfection Byproducts in Drinking Water: Formation, Analysis, and Control (Taylor & Francis, 2003).

  17. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Tapping into the efficiency of hydrogen peroxide for water treatment. (Solvay, 2018); https://www.solvay.com/en/article/hydrogen-peroxide-for-water-treatment

  19. Block, S. S. in Disinfection, Sterilization and Preservation 5th edn, 185–204 (Lippincott, Williams & Wilkins, 2003).

  20. Linley, E., Denyer, S. P., McDonnell, G., Simons, C. & Maillard, J.-Y. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J. Antimicrob. Chemother. 67, 1589–1596 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Leggett, M. J. et al. Mechanism of sporicidal activity for the synergistic combination of peracetic acid and hydrogen peroxide. Appl. Environ. Microbiol. 82, 1035–1039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finnegan, M. et al. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J. Antimicrob. Chemother. 65, 2108–2115 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Jung, Y., Park, J. Y., Ko, S. O. & Kim, Y. H. Stabilization of hydrogen peroxide using phthalic acids in the Fenton and Fenton-like oxidation. Chemosphere 90, 812–819 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Schumb, W. Stabilization of concentrated solutions of hydrogen peroxide. Ind. Eng. Chem. 49, 1759–1762 (1957).

    Article  CAS  Google Scholar 

  25. Underhill, R. et al. Oxidative degradation of phenol using in-situ generated H2O2 combined with Fenton’s process. Johns. Matthey Technol. Rev. 62, 417–425 (2018).

    Article  CAS  Google Scholar 

  26. Santos, A. et al. Direct synthesis of hydrogen peroxide over Au–Pd supported nanoparticles under ambient conditions. Ind. Eng. Chem. Res. 58, 12623–12631 (2019).

    Article  CAS  Google Scholar 

  27. García, T. et al. Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catal. Today 248, 48–57 (2015).

    Article  CAS  Google Scholar 

  28. Samanta, C. & Choudhary, V. R. Direct synthesis of H2O2 from H2 and O2 over Pd/H-beta catalyst in an aqueous acidic medium: influence of halide ions present in the catalyst or reaction medium on H2O2 formation. Catal. Commun. 8, 73–79 (2007).

    Article  CAS  Google Scholar 

  29. European Standard BS EN1276:2019: Chemical disinfectants and antiseptics—quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas—test method and requirements (BSI, 2019); https://www.en-standard.eu/publicdoc/bs-en-1276-2019-chemical-disinfectants-and-antiseptics.pdf

  30. Freakley, S. J. et al. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2 catalyst in a flow reactor. ACS Catal. 3, 487–501 (2013).

    Article  CAS  Google Scholar 

  31. Ford, D. C., Nilekar, A. U., Xu, Y. & Mavrikakis, M. Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf. Sci. 604, 1565–1575 (2010).

    Article  CAS  Google Scholar 

  32. Ronen, Z., Guerrero, Z. A. & Gross, A. Greywater disinfection with the environmentally friendly Hydrogen Peroxide Plus (HPP). Chemosphere 78, 61–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Scoville, J. R. & Novicova, I. A. Hydrogen peroxide disinfecting and sterilizing compositions. US Patent 5,900,256 (1996).

  34. Wegner, P. Hydrogen peroxide stabilizer and resulting product and applications. US Patent 20,050,065,052 A1 (2003).

  35. Mazzola, P. G., Penna, T. C. V. & da S Martins, A. M. Determination of decimal reduction time (D value) of chemical agents used in hospitals for disinfection purposes. BMC Infect. Dis. 3, 24 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Watts, M. J. & Linden, K. G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Res. 41, 2871–2878 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Lillard, S. H. & Thomson, J. E. Efficacy of hydrogen peroxide as a bactericide in poultry chiller water. J. Food Sci. 48, 125–126 (1983).

    Article  CAS  Google Scholar 

  38. Xia, D. et al. Enhanced photocatalytic inactivation of Escherichia coli by a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: the role of reactive oxygen species. Appl. Catal. B 214, 23–33 (2017).

    Article  CAS  Google Scholar 

  39. Spuhler, D., Andrés Rengifo-Herrera, J. & Pulgarin, C. The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl. Catal. B 96, 126–141 (2010).

    Article  CAS  Google Scholar 

  40. Abidi, M. et al. Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: competition effect and kinetic studies. J. Photochem. Photobiol. A 400, 112722 (2020).

    Article  CAS  Google Scholar 

  41. Murphy, H. M., Payne, S. J. & Gagnon, G. A. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Res. 42, 2083–2092 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, Y. et al. Removal of Escherichia coli from water using functionalized porous ceramic disk filter coated with Fe/TiO2 nano-composites. J. Water Process. Eng. 33, 101013 (2020).

    Article  Google Scholar 

  43. Clark, T., Dean, B. & Watkins, S. E. Evaluation of different hydrogen peroxide products for maintaining adequate sanitizing residual in water. Avian Advice 11, 1–3 (2009).

    Google Scholar 

  44. Sobsey, M. D. Inactivation of health-related microorganisms in water by disinfection processes. Water Sci. Technol. 21, 179–195 (1989).

    Article  CAS  Google Scholar 

  45. Ferris, R. A. et al. In vitro efficacy of nonantibiotic treatments on biofilm disruption of gram-negative pathogens and an in vivo model of infectious endometritis utilizing isolates from the equine uterus. J. Clin. Microbiol. 54, 631–639 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, M., Chung, H., Choi, W. & Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 38, 1069–1077 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. P. Lukes, B. R. & Locke, J.-L. in Plasma Chemistry and Catalysis in Gases and Liquids (eds Parvulescu, V. I., Magureanu, M. & Lukes, P.), 243–308 (Wiley-VCH, 2012).

  48. Keyer, K. & Imlay, J. A. Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl Acad. Sci. USA 93, 13635–13640 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pinto, E. et al. Heavy metal-induced oxidative stress in algae. J. Phycol. 39, 1008–1018 (2003).

    Article  CAS  Google Scholar 

  50. Pizzorno, J. Glutathione! Integr. Med. (Encinitas) 13, 8–12 (2014).

    Google Scholar 

  51. Sankar, M. et al. Synthesis of stable ligand-free gold–palladium nanoparticles using a simple excess anion method. ACS Nano 6, 6600–6613 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Ouyang, L. et al. The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts: interfaces of Pd and PdO domains. J. Catal. 321, 70–80 (2015).

    Article  CAS  Google Scholar 

  53. Gong, X. et al. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catal. Sci. Technol. 10, 4635–4644 (2020).

    Article  CAS  Google Scholar 

  54. Buettner, G. R. Spin trapping: ESR parameters of spin adducts 1474 1528V. Free Radic. Biol. Med. 3, 259–303 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Kiwi, J. & Nadtochenko, V. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21, 4631–4641 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Anbar, M., Meyerstein, D. & Neta, P. Reactivity of aliphatic compounds towards hydroxyl radicals. J. Chem. Soc. B 1966, 742–747 (1966).

    Article  Google Scholar 

  57. Billany, M. R., Khatib, K., Gordon, M. & Sugden, J. K. Alcohols and ethanolamines as hydroxyl radical scavengers. Int. J. Pharm. 137, 143–147 (1996).

    Article  CAS  Google Scholar 

  58. Palluy, O., Bonne, C. & Modat, G. Hypoxia/reoxygenation alters endothelial prostacyclin synthesis—protection by superoxide dismutase. Free Radic. Biol. Med. 11, 269–275 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Chelikani, P., Fita, I. & Loewen, P. C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61, 192–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Finkelstein, E., Rosen, G. M., Rauckman, E. J. & Paxton, J. Spin trapping of superoxide. Mol. Pharmacol. 16, 676 (1979).

    CAS  PubMed  Google Scholar 

  62. Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Mol. Pharmacol. 21, 262–265 (1982).

    CAS  PubMed  Google Scholar 

  63. Lewis, R. J. et al. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11, 1673–1680 (2019).

    Article  CAS  Google Scholar 

  64. Simoes, L. C., Simoes, M. & Vieira, M. J. Biofilm interactions between distinct bacterial genera isolated from drinking water. Appl. Environ. Microbiol. 73, 6192–6200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research discussion with Dŵr Cymru Welsh Water and the Cardiff University electron microscope facility for the transmission electron microscopy. R.J.L. and G.J.H. acknowledge Cardiff University and the Max Planck Centre for Fundamental Heterogeneous Catalysis (FUNCAT) for financial support. S.J.F. acknowledges Cardiff University for financial support as part of the MAXNET Energy Consortium. In addition, S.J.F. acknowledges the award of a Prize Research Fellowship from the University of Bath. D.A.C. acknowledges Selden Research Limited. J.-Y.M. and G.M.S. thank Laboratoires Anios for funding. G.J.H. thanks the EPSRC (EP/F008538/1) for funding. Q.H. acknowledges support from the National Research Foundation (NRF) Singapore, under its NRF Fellowship (NRF-NRFF11-2019-0002).

Author information

Authors and Affiliations

Authors

Contributions

T.R., J.H.H., R.J.L., A.G.R.H., G.M.S., A.F., J.K.E., D.M.M., J.-Y.M., S.J.F. and G.J.H. contributed to the design of the study. T.R., J.H.H., R.J.L., A.G.R.H., G.M.S., E.J.L., D.A.C. and S.J.F. conducted the experiments and data analysis. R.J.L., A.G.R.H., A.F., J.K.E, P.G., C.J.K., D.M.M., J.-Y.M., S.J.F. and G.J.H. provided technical advice and result interpretation. D.J.M., T.E.D., C.J.K. and Q.H. conducted the catalyst characterization and corresponding data processing. R.J.L., A.F., J.-Y.M., S.J.F. and G.J.H. wrote the manuscript. R.J.L., A.F. and S.J.F. wrote the Supplementary Information, and all the authors commented on and amended both documents. All the authors discussed and contributed to the work.

Corresponding author

Correspondence to Graham J. Hutchings.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Piedomenico Biasi, Bingcai Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Notes 1–3, Tables 1–5 and References 1–36.

Source data

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, T., Harrhy, J.H., Lewis, R.J. et al. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nat Catal 4, 575–585 (2021). https://doi.org/10.1038/s41929-021-00642-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00642-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing