Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene

Abstract

The current thermocatalytic acetylene hydrogenation process suffers from the use of excessive hydrogen and the noble metal Pd, high temperatures and overhydrogenation. Here we report an electrocatalytic semihydrogenation strategy to selectively reduce acetylene impurities to ethylene under ambient conditions. For a crude ethylene flow that contains 1 × 104 ppm acetylene, electrochemically deposited Cu dendrites exhibited a high specific selectivity of 97%, continuous production of a polymer-grade ethylene stream (4 ppm acetylene) at a large space velocity of 9.6 × 104 ml gcat–1 h–1 and excellent long-term stability. Theoretical and operando electrochemical Raman investigations revealed that the outstanding electrocatalytic acetylene semihydrogenation performance of Cu catalysts originates from its exothermic acetylene adsorption and ethylene desorption. Meanwhile, the electrocatalytic semihydrogenation strategy is universally applicable for hydrogenating other alkyne impurities to produce polymer-grade olefins, for example, propylene and 1,3-butadiene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations for two different acetylene hydrogenation processes.
Fig. 2: Theoretical calculations and experimental investigations.
Fig. 3: Structural morphology and catalytic performance of the Cu dendrites.
Fig. 4: Alkyne semihydrogenation for the production of polymer-grade olefins.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Bridier, B. & Pérez-Ramírez, J. Cooperative effects in ternary Cu−Ni−Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J. Am. Chem. Soc. 132, 4321–4327 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Bos, A. N. R. & Westerterp, K. R. Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem. Eng. Process. 32, 1–7 (1993).

    Article  CAS  Google Scholar 

  5. Schbib, N. S., García, M. A., Gígola, C. E. & Errazu, A. F. Kinetics of front-end acetylene hydrogenation in ethylene production. Ind. Eng. Chem. Res. 35, 1496–1505 (1996).

    Article  CAS  Google Scholar 

  6. Niu, Y. et al. Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne. Nat. Commun. 11, 3324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Primo, A., Neatu, F., Florea, M., Parvulescu, V. & Garcia, H. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nat. Commun. 5, 5291 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, F. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 4413 (2019).

    Article  CAS  Google Scholar 

  9. Kojima, T., Kameoka, S., Fujii, S., Ueda, S. & Tsai, A.-P. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: a new potential for old materials. Sci. Adv. 4, eaat6063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, X. et al. Thiol treatment creates selective palladium catalysts for semihydrogenation of internal alkynes. Chem 4, 1080–1091 (2018).

    Article  CAS  Google Scholar 

  11. Wang, S. et al. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. 58, 7668–7672 (2019).

    Article  CAS  Google Scholar 

  12. Hu, M. et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 30, 1801878 (2018).

    Article  CAS  Google Scholar 

  13. Armbrüster, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 11, 690–693 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Riley, C. et al. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 140, 12964–12973 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Ding, K. et al. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 362, 560–564 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Davitt, H. J. & Albright, L. F. Electrochemical hydrogenation of ethylene, acetylene, and ethylene–acetylene mixtures. J. Electrochem. Soc. 118, 236 (1971).

    Article  CAS  Google Scholar 

  21. Burke, L. D., Lewis, F. A. & Kemball, C. Hydrogenation of acetylene at palladized palladium and platinized platinum electrodes. Trans. Faraday Soc. 60, 919–929 (1964).

    Article  CAS  Google Scholar 

  22. Otsuka, K. & Yagi, T. An electrochemical membrane reactor for selective hydrogenation of acetylene in abundant ethylene. J. Catal. 145, 289–294 (1994).

    Article  CAS  Google Scholar 

  23. Huang, B., Durante, C., Isse, A. A. & Gennaro, A. Highly selective electrochemical hydrogenation of acetylene to ethylene at Ag and Cu cathodes. Electrochem. Commun. 34, 90–93 (2013).

    Article  CAS  Google Scholar 

  24. Bełtowska-Brzezinska, M., Łuczak, T., Mączka, M., Baltruschat, H. & Müller, U. Ethyne oxidation and hydrogenation on porous Pt electrode in acidic solution. J. Electroanal. Chem. 519, 101–110 (2002).

    Article  Google Scholar 

  25. Pei, G. X. et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 7, 1491–1500 (2017).

    Article  CAS  Google Scholar 

  26. Jiang, L. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, H. et al. PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 6, 1054–1061 (2016).

    Article  CAS  Google Scholar 

  28. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, Z. J. et al. Competition of C–C bond formation and C–H bond formation for acetylene hydrogenation on transition metals: a density functional theory study. AlChE J. 65, 1059–1066 (2019).

    Article  CAS  Google Scholar 

  30. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  31. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, Y.-G. et al. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 780, 290–295 (2016).

    Article  CAS  Google Scholar 

  33. Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019).

    Article  CAS  Google Scholar 

  35. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  36. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    Article  CAS  Google Scholar 

  37. Liu, G.-k et al. Electrochemical polymerization of acetylene on Rh electrodes probed by surface-enhanced Raman spectroscopy. J. Electroanal. Chem. 594, 73–79 (2006).

    Article  CAS  Google Scholar 

  38. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Patterson, M. L. & Weaver, M. J. Surface-enhanced Raman spectroscopy as a probe of adsorbate–surface bonding: simple alkenes and alkynes adsorbed at gold electrodes. J. Phys. Chem. 89, 5046–5051 (1985).

    Article  CAS  Google Scholar 

  40. Wang, X. et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 142, 3525–3531 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Y., Liu, C., Wang, C., Lu, S. & Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd‐P cathode. Angew. Chem. Int. Ed. 132, 21356–21361 (2020).

    Article  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  45. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).

    Article  Google Scholar 

  46. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  47. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant no. 310201911cx028 (J.Z.) and no. 3102017jc01001 (Q.Z.)), the Natural Science Foundation of Shaanxi Province (no. 2020JQ-141 (J.Z.)) and the National Natural Science Foundation of China (no. 22005245 (J.Z.)). We thank the Analytical & Testing Center of Northwestern Polytechnical University for the SEM and TEM characterizations. We also acknowledge L. Cheng and H. Liu for the Raman tests at the School of Science, Xi’an Polytechnic University.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. designed the experiments. J.B. conducted the catalyst syntheses and performance evaluations. J.B., Z.L., L.Z. and W.M. performed the related materials characterizations. T.W. conducted the theoretical calculations. J.Z. and J.B. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xinliang Feng or Jian Zhang.

Ethics declarations

Competing interests

J.Z. and J.B. are inventors on patent application CN112301373A submitted by Northwestern Polytechnical University, which covers the selective electrocatalytic acetylene semihydrogenation for the production of polymer-grade ethylene. The other authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Christian Durante, Rodrigo García-Muelas and Yujin Tong for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and Table 1.

Supplementary Video 1

Electrocatalytic acetylene semihydrogenation process was powered by the electricity generated from solar irradiation.

Supplementary Data 1

Statistical Source Data for Supplementary Figure 13.

Supplementary Data 2

Statistical Source Data for Supplementary Figure 14.

Supplementary Data 3

Statistical Source Data for Supplementary Figure 17.

Supplementary Data 4

Atomic coordinates of the optimised computational models.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, J., Liu, Z., Ma, W. et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat Catal 4, 557–564 (2021). https://doi.org/10.1038/s41929-021-00641-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00641-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing