Skip to main content
Log in

An Accurate Restarting for Shift-and-Invert Krylov Subspaces Computing Matrix Exponential Actions of Nonsymmetric Matrices

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An accurate residual-time (AccuRT) restarting for computing matrix exponential actions of nonsymmetric matrices by the shift-and-invert (SAI) Krylov subspace method is proposed. The proposed restarting method is an extension of the recently proposed RT (residual-time) restarting and it is designed to avoid a possible accuracy loss in the conventional RT restarting. An expensive part of the SAI Krylov method is solution of linear systems with the shifted matrix. Since the AccuRT algorithm adjusts the shift value, we discuss how the proposed restarting can be implemented with just a single LU factorization (or a preconditioner setup) of the shifted matrix. Numerical experiments demonstrate an improved accuracy and efficiency of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Hochbruck and A. Ostermann, “Exponential integrators,” Acta Numer. 19, 209–286 (2010).

    Article  MathSciNet  Google Scholar 

  2. O. de la Cruz Cabrera, M. Matar, and L. Reichel, “Analysis of directed networks via the matrix exponential,” J. Comput. Appl. Math. 355, 182–192 (2019).https://doi.org/10.1016/j.cam.2019.01.015

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Kürschner, “Balanced truncation model order reduction in limited time intervals for large systems,” Adv. Comput. Math. 44 (2018). https://doi.org/10.1007/s10444-018-9608-6

  4. A. Frommer and V. Simoncini, “Matrix functions,” Model Order Reduction: Theory, Research Aspects and Applications, Ed. by W. H. Schilders, H. A. van der Vorst, and J. Rommes (Springer, Berlin, 2008), pp. 275–304.

    MATH  Google Scholar 

  5. L. Bergamaschi and M. Vianello, “Efficient computation of the exponential operator for large, sparse, symmetric matrices,” Numer. Linear Algebra Appl. 7 (1), 27–45 (2000).

    Article  MathSciNet  Google Scholar 

  6. A. H. Al-Mohy and N. J. Higham, “Computing the action of the matrix exponential, with an application to exponential integrators,” SIAM J. Sci. Comput. 33 (2), 488–511 (2011). https://doi.org/10.1137/100788860

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Moret and P. Novati, “RD rational approximations of the matrix exponential,” BIT 44, 595–615 (2004).

    Article  MathSciNet  Google Scholar 

  8. J. van den Eshof and M. Hochbruck, “Preconditioning Lanczos approximations to the matrix exponential,” SIAM J. Sci. Comput. 27 (4), 1438–1457 (2006).

    Article  MathSciNet  Google Scholar 

  9. V. Druskin, L. Knizhnerman, and M. Zaslavsky, “Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts,” SIAM J. Sci. Comput. 31 (5), 3760–3780 (2009).

    Article  MathSciNet  Google Scholar 

  10. S. Güttel, PhD Thesis (Tech. Univ. Bergakademie, Freiberg, 2010). www.guettel.com.

  11. S. Güttel, “Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection,” GAMM Mitteilungen 36 (1), 8–31 (2013). www.guettel.com.

  12. E. Celledoni and I. Moret, “A Krylov projection method for systems of ODEs,” Appl. Numer. Math. 24 (2–3), 365–378 (1997).

    Article  MathSciNet  Google Scholar 

  13. H. Tal-Ezer, “On restart and error estimation for Krylov approximation of w = f(A)\({v}\),” SIAM J. Sci. Comput. 29 (6), 2426–2441 (2007). https://doi.org/10.1137/040617868

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Afanasjew, M. Eiermann, O. G. Ernst, and S. Güttel, “Implementation of a restarted Krylov subspace method for the evaluation of matrix functions,” Linear Algebra Appl. 429, 2293–2314 (2008).

    Article  MathSciNet  Google Scholar 

  15. M. Eiermann, O. G. Ernst, and S. Güttel, “Deflated restarting for matrix functions,” SIAM J. Matrix Anal. Appl. 32 (2), 621–641 (2011).

    Article  MathSciNet  Google Scholar 

  16. A. Frommer, S. Güttel, and M. Schweitzer, “Efficient and stable Arnoldi restarts for matrix functions based on quadrature,” SIAM J. Matrix Anal. Appl. 35 (2), 661–683 (2014).

    Article  MathSciNet  Google Scholar 

  17. T. Jawecki, W. Auzinger, and O. Koch, “Computable strict upper bounds for Krylov approximations to a class of matrix exponentials and \(\phi \)-functions,” (2018). https://arxiv.org/pdf/1809.03369.

  18. M. Hochbruck and C. Lubich, “Exponential Integrators for quantum-classical molecular dynamics,” BIT 39 (4), 620–645 (1999).

    Article  MathSciNet  Google Scholar 

  19. M. Hochbruck, T. Pažur, A. Schulz, et al., “Efficient time integration for discontinuous Galerkin approximations of linear wave equations,” Z. Angew. Math. Mech. 95 (3), 237–259 (2015). https://doi.org/10.1002/zamm.201300306

    Article  MATH  Google Scholar 

  20. R.-U. Börner, O. G. Ernst, and S. Güttel, “Three-dimensional transient electromagnetic modeling using rational Krylov methods,” Geophys. J. Int. 202 (3), 2025–2043 (2015).

    Article  Google Scholar 

  21. M. A. Botchev, A. M. Hanse, and R. Uppu, “Exponential Krylov time integration for modeling multifrequency optical response with monochromatic sources,” J. Comput. Appl. Math. 340, 474–485 (2018). https://doi.org/10.1016/j.cam.2017.12.014

    Article  MathSciNet  MATH  Google Scholar 

  22. M. A. Botchev and L. A. Knizhnerman, “ART: Adaptive residual-time restarting for Krylov subspace matrix exponential evaluations,” J. Comput. Appl. Math. 364 (112311) (2020).https://doi.org/10.1016/j.cam.2019.06.027

  23. J. Niehoff, PhD Thesis (Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düusseldorf, 2006).

  24. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, 1996).

    MATH  Google Scholar 

  25. C. B. Moler and C. F. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” SIAM Rev. 45 (1), 3–49 (2003).

    Article  MathSciNet  Google Scholar 

  26. N. J. Higham, Functions of Matrices: Theory and Computation (SIAM, Philadelphia, PA, 2008).

    Book  Google Scholar 

  27. M. A. Botchev, V. Grimm, and M. Hochbruck, “Residual, restarting, and Richardson iteration for the matrix exponential,” SIAM J. Sci. Comput. A 35 (3), 1376–1397 (2013). https://doi.org/10.1137/110820191

    Article  MathSciNet  MATH  Google Scholar 

  28. B. N. Parlett, The Symmetric Eigenvalue Problem (SIAM, Philadelphia, PA, 1998).

    Book  Google Scholar 

  29. H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  30. Y. Saad, Iterative Methods for Sparse Linear Systems, 2d ed. (SIAM, Philadelphia, PA, 2003). http://www-users.cs.umn.edu/~saad/books.html.

    Book  Google Scholar 

  31. V. L. Druskin and L. A. Knizhnerman, “Two polynomial methods of calculating functions of symmetric matrices,” USSR Comput. Math. Math. Phys. 29 (6), 112–121 (1989).

    Article  MathSciNet  Google Scholar 

  32. L. A. Knizhnerman, “Calculation of functions of unsymmetric matrices using Arnoldi’s Method,” USSR Comput. Math. Math. Phys. 31 (1), 1–9 (1991).

    MATH  Google Scholar 

  33. M. Hochbruck and C. Lubich, “On Krylov subspace approximations to the matrix exponential operator,” SIAM J. Numer. Anal. 34 (5), 1911–1925 (1997).

    Article  MathSciNet  Google Scholar 

  34. V. L. Druskin, A. Greenbaum, and L. A. Knizhnerman, “Using nonorthogonal Lanczos vectors in the computation of matrix functions,” SIAM J. Sci. Comput. 19 (1), 38–54 (1998).

    Article  MathSciNet  Google Scholar 

  35. W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations (Springer, Berlin, 2003).

    Book  Google Scholar 

  36. R. Barrett, M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (SIAM, Philadelphia, PA, 1994). www.netlib.org/templates.

    Book  Google Scholar 

  37. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856–869 (1986).

    Article  MathSciNet  Google Scholar 

  38. Y. Saad, Iterative Methods for Sparse Linear Systems, Book out of print (2000). www-users.cs.umn.edu/~saad/books.html.

  39. R. B. Sidje, “Expokit: A software package for computing matrix exponentials,” ACM Trans. Math. Software 24 (1), 130–156 (1998). www.maths.uq.edu.au/expokit.

    Article  Google Scholar 

  40. L. A. Krukier, “Implicit difference schemes and an iterative method for solving them for a certain class of systems of quasi-linear equations,” Sov. Math. 23 (7), 43–55 (1979).

    MATH  Google Scholar 

  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Boston, MA, 2005).

    MATH  Google Scholar 

  42. J. S. Kole, M. T. Figge, and H. De Raedt, “Unconditionally stable algorithms to solve the time-dependent Maxwell equations,” Phys. Rev. E 64, 066705 (2001).

    Article  Google Scholar 

  43. J. G. Verwer and M. A. Botchev, “Unconditionally stable integration of Maxwell’s equations,” Linear Algebra Appl. 431 (3–4), 300–317 (2009).

    Article  MathSciNet  Google Scholar 

  44. M. A. Botchev, “Krylov subspace exponential time domain solution of Maxwell’s equations in photonic crystal modeling,” J. Comput. Appl. Math. 293, 24–30 (2016). https://doi.org/10.1016/j.cam.2015.04.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation grant no. 19-11-00338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Botchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botchev, M.A. An Accurate Restarting for Shift-and-Invert Krylov Subspaces Computing Matrix Exponential Actions of Nonsymmetric Matrices. Comput. Math. and Math. Phys. 61, 684–698 (2021). https://doi.org/10.1134/S0965542521050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521050031

Keywords:

Navigation