Skip to main content
Log in

Preparation and Visible Photocatalytic Properties of N-Doped TiO2/Muscovite Nanocomposites

  • Published:
Clays and Clay Minerals

Abstract

As a photocatalyst with good prospects, TiO2 has the shortcomings of easy agglomeration and no catalytic performance under visible light. The purpose of the present study was to help solve these problems by employing muscovite as a carrier for N-doped TiO2 in a nanocomposite. The nanocomposites were prepared by a liquid precipitation-grinding method using muscovite as the matrix and urea as the nitrogen source. The crystal structures, chemical bonding, and micromorphology of the nanocomposites were analyzed by X-ray diffraction, infrared absorption spectrometry, and field emission scanning electron microscopy, respectively. Visible and ultraviolet (UV-Vis) light absorption of the nanocomposites was analyzed by solid ultraviolet diffuse reflectance spectroscopy. The photocatalytic effect of the nanocomposites was studied based on the degradation of rhodamine B (RhB) solution. The photocatalytic degradation product of RhB was detected by high-performance liquid chromatography-mass spectrometry, revealing that N-doping inhibits the growth of TiO2 nanoparticles. The photocatalytic performance of N-TiO2/muscovite composite nanomaterials decreased with increasing heat-treatment temperature. N-doped TiO2/muscovite nanocomposites that were heated at 400°C showed the best photocatalytic performance under visible-light illumination with an RhB degradation of 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  • Asahi, R., Morikawa, T., Irie, H., & Ohwaki, T. (2014). Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Review, 114, 9824–9852.

    Article  Google Scholar 

  • Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269–271.

    Article  Google Scholar 

  • Chagas, C. A., Pfeifer, R., Rocha, A. B., & Teixeira da Silva, V. (2012). Synthesis of niobium carbonitride by thermal decomposition of guanidine oxaloniobate and its application to the hydrodesulfurization of dibenzothiophene. Topics in Catalysis, 55, 910–921.

    Article  Google Scholar 

  • Chen, Y., & Liu, K. (2016). Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light. Chemical Engineering Journal, 302, 682–696.

    Article  Google Scholar 

  • Ekimov, A. I., Efros, A. L., & Onushchenko, A. A. (1985). Quantum size effect in semiconductor microcrystals. Solid State Communication, 56, 921–924.

    Article  Google Scholar 

  • El-Gamel, N. E. A., Wagler, J., & Kroke, E. (2008). Guanidinium cyanurates versus guanidinium cyamelurates: Synthesis, spectroscopic investigation and structural characterization. Journal of Molecular Structure, 888, 204–213.

    Article  Google Scholar 

  • Fan, D., Wu, L., Sun, Y., Min, F., Wu, Z., & Lee, S. C. (2011). Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry, 21, 15171–15174.

    Article  Google Scholar 

  • Gomes, J., Lincho, J., Domingues, E., Quinta-Ferreira, R., & Martins, R. (2019). N–TiO2 photocatalysts: A review of their characteristics and capacity for emerging contaminants removal. Water, 11, 373. https://doi.org/10.3390/w11020373.

    Article  Google Scholar 

  • Gomes, J. F., Leal, I., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Zaleska-Medynska, A., et al. (2017). Detoxification of parabens using UV-A enhanced by noble metals TiO2 supported catalysts. Journal of Environmental Chemical Engineering, 5, 3065–3074.

    Article  Google Scholar 

  • Hauck, P., Jentys, A., & Lercher, J. A. (2007). Surface chemistry and kinetics of the hydrolysis of isocyanic acid on anatase. Applied Catalysis B: Environmental, 70, 91–99. https://doi.org/10.1016/j.apcatb.2005.12.025.

    Article  Google Scholar 

  • Huang, T., Zhang, G., Wang, L., Liu, L., & Sun, X. (2011). Preparation of nitrogen-modified titania with urea as nitrogen source and its modification mechanism. Chinese Journal of Catalysis (Chinese Version), 32, 508–512.

    Article  Google Scholar 

  • Jansen, M., & Letschert, H. P. (2000a). Inorganic yellow-red pigments without toxic metals. Nature, 404, 980.

    Article  Google Scholar 

  • Jansen, M., & Letschert, H. P. (2000b). Inorganic yellow-red pigments without toxic metals. Nature, 404, 980–982.

    Article  Google Scholar 

  • Jansson, I., Suárez, S., Garcia-Garcia, F. J., & Sánchez, B. (2015). Zeolite-TiO2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B: Environmental, 178, 100–107.

    Article  Google Scholar 

  • Jin Wang, D. N. T., Lewis, J. P., Hong, Z., Manivannan, A., Zhi, M., Li, M., & Wu, N. (2009). Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. Journal of the American Chemical Society, 2009(131), 12290–12297.

    Article  Google Scholar 

  • Joshi, M. M., Mangrulkar, P. A., Tijare, S. N., Padole, P. S., Parwate, D. V., Labhsetwar, N. K., & Rayalu, S. S. (2012). Visible light induced photoreduction of water by N-doped mesoporous titania. International Journal of Hydrogen Energy, 37, 10457–10461.

    Article  Google Scholar 

  • Jun, Y.-S., Lee, E. Z., Wang, X., Hong, W. H., Stucky, G. D., & Thomas, A. (2013). From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Advanced Functional Materials, 23, 3661–3667.

    Article  Google Scholar 

  • Kun, R., Mogyorosi, K., & Dekany, I. (2006). Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Applied Clay Science, 32, 99–110.

    Article  Google Scholar 

  • Laipan, M., Runliang, Z., & Hongping, H. (2016). Visible light assisted Fenton-like degradation of Orange II on Ni3Fe/Fe3O4 magnetic catalyst prepared from spent FeNi layered double hydroxide. Journal of Molecular Catalysis A: Chemical, 415, 9–16.

    Article  Google Scholar 

  • Liang, X. L., He, Z. S., Zhong, Y. H., Tan, W., & Zhang, J. (2013). The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: in interfacial view. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 435, 28–35.

    Article  Google Scholar 

  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1–10.

    Article  Google Scholar 

  • Mitoraj, D., & Kisch, H. (2008). The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angewandte Chemie International Edition, 47, 9975–9978.

    Article  Google Scholar 

  • Obregón, S., Muñoz-Batista, M. J., Fernández-García, M., Kubacka, A., & Colón, G. (2015). Cu-TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Applied Catalysis B: Environmental, 179, 468–478.

    Article  Google Scholar 

  • Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., & Choi, W. (2009). Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Environmental, 91, 355–336.

    Article  Google Scholar 

  • Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical Review, 56, 978–982.

    Article  Google Scholar 

  • Rangel, R., Cedeño, V., Espino, J., Bartolo-Pérez, P., Rodríguez-Gattorno, G., & Alvarado-Gil, J. (2018). Comparing the efficiency of N-doped TiO2 and N-doped Bi2MoO6 photo catalysts for MB and lignin photodegradation. Catalysts, 8, 668. https://doi.org/10.3390/catal8120668.

    Article  Google Scholar 

  • Sato, S. (1985). Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters, 123, 126–128.

    Article  Google Scholar 

  • Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B., & Brauer, J. (2004). Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta, 424, 131–142.

    Article  Google Scholar 

  • Shi, L., Liang, L., Wang, F., Ma, J., & Sun, J. (2014). Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catalysis Science & Technology, 4, 207–209.

    Google Scholar 

  • Sun, Q., Hu, X., Zheng, S., Zhang, J., & Sheng, J. (2019). Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr. Environmental Pollution, 245, 53–62.

    Article  Google Scholar 

  • Wang, P.-P., Huang, B., Dai, Y., & Whangbo, M.-H. (2012). Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics: PCCP, 14, 9813–9825.

    Article  Google Scholar 

  • Yao, L., Hongjuan, S., Tongjiang, P., Hao, Y., Yating, Q., & Li, Z. (2019). Effects of muscovite matrix on photocatalytic degradation in TiO2/muscovite nanocomposites. Applied Clay Science, 179, 105155.

    Article  Google Scholar 

  • Yu, C., Wu, Z., Liu, R., Dionysiou, D. D., Yang, K., Wang, C., & Liu, H. (2020). Corrigendum to “Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination”. Applied Catalysis B: Environmental. https://doi.org/10.1016/j.apcatb.2017.02.057.

  • Zhou, S., Lv, J., Guo, L. K., Xu, G. Q., Wang, D. M., Zheng, Z. X., & Wu, Y. C. (2012). Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites. Applied Surface Science, 258, 6136–6141.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the innovation team project sponsored by the Education Department of Sichuan Province, China (grant number: 14TD0012) and the Science and Technology Planning Project of Guangdong Province, China (grant number: 2017B030314175).

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Sun, H., Peng, T. et al. Preparation and Visible Photocatalytic Properties of N-Doped TiO2/Muscovite Nanocomposites. Clays Clay Miner. 69, 254–262 (2021). https://doi.org/10.1007/s42860-021-00126-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00126-9

Keywords

Navigation