Skip to main content
Log in

Novel Protein Hydrocolloids Constructed by Hydrophobic Rice Proteins and Walnut Proteins as Loading Platforms for Nutraceutical Models

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Low water solubility strictly limits the application potential of such plant-derived proteins as rice proteins (RPs) and walnut proteins (WPs), albeit their nutritional and health-related properties. In this study, by simply dissolving RPs and WPs at pH 12 prior to neutralization, we successfully prepared nanoscale hydrocolloidal composites with shared internal molecular arrangements, boosting the solubility of RPs to over 80% (w/v) while completely solubilizing WPs. Atomic force microscopy and transmission electron microscopy showed that the two polypeptide chains were packed into homogeneous particles with a diameter ranging from 50 to 100 nm. Varying the mass ratio of RPs/WPs enabled the flexible or rigid chain configuration, which was confirmed by static and dynamic light scattering. The results from zeta-potential and surface hydrophobicity demonstrated that the burial of hydrophobic groups and the exposure of charged moieties stipulated the aqueous stability of the protein composites. The apigenin encapsulated in protein composites showed preferable aqueous solubility. Moreover, the improvement of bioaccessibility of apigenin was proved by in vitro simulated digestion experiment. This study provided a new route for utilizing underdeveloped protein resources, especially those with hydrophobic attributes, and potentially expanding the applications of these proteins in the fields of food and related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327, 812 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. M. Pojić, A. Mišan, B. Tiwari, Trends Food Sci. Technol. 75, 93 (2018)

    Article  Google Scholar 

  3. A. Kannan, N. Hettiarachchy, M.G. Johnson, R. Nannapaneni, J. Agric. Food Chem. 56, 11643 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. S. Yu, N. Fang, Q. Li, J. Zhang, H. Luo, M. Ronis, T.M. Badger, J. Agric. Food Chem. 54, 4482 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. N. Xia, J.M. Wang, Q. Gong, X.Q. Yang, S.W. Yin, J.R. Qi, J. Cereal Sci. 56, 482 (2012)

    Article  CAS  Google Scholar 

  6. M. Zhao, W. Xiong, B. Chen, J. Zhu, L. Wang, Food Hydrocoll. 103, 105626 (2019)

    Article  Google Scholar 

  7. C. Fuentealba, I. Hernandez, S. Saa, L. Toledo, P. Burdiles, R. Chirinos, D. Campos, P. Brown, R. Pedreschi, Food Chem. 232, 664 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. K.W.C. Sze-Tao, S.K. Sathe, J. Sci. Food Agr. 80, 1393 (2000)

    Article  CAS  Google Scholar 

  9. Y. Cai, X. Deng, T. Liu, M. Zhao, Q. Zhao, S. Chen, Food Hydrocoll. 79, 391 (2018)

    Article  CAS  Google Scholar 

  10. Y. Tan, X. Deng, T. Liu, B. Yang, M. Zhao, Q. Zhao, Food Hydrocoll. 72, 73 (2017)

    Article  CAS  Google Scholar 

  11. X. Kong, L. Zhang, X. Lu, C. Zhang, Y. Hua, Y. Chen, LWT-Food. Sci. Technol. 116, 108500 (2019)

    CAS  Google Scholar 

  12. H. Hu, T. Fan, X. Zhao, X. Zhang, Y. Sun, H. Liu, J. Food Sci. Technol. 54, 2833 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Yue, Z. Fang, J. Wei, W. Yokoyama, C.F. Shoemaker, Z. Song, W. Xia, Food Hydrocoll. 30, 53 (2013)

    Article  Google Scholar 

  14. A.-M. Shi, B. Jiao, H.-Z. Liu, S. Zhu, M.-J. Shen, X.-L. Feng, H. Hu, L. Liu, S. Faisal, Q. Wang, A. Benu, LWT-Food. Sci. Technol. 97, 662 (2018)

    CAS  Google Scholar 

  15. X. Xu, W. Liu, C. Liu, L. Luo, J. Chen, S. Luo, D.J. Mcclements, L. Wu, Food Hydrocoll. 61, 251 (2016)

    Article  CAS  Google Scholar 

  16. S.M. Zhu, S.L. Lin, H.S. Ramaswamy, Y. Yu, Q.T. Zhang, Food Bioprocess Tech. 10, 317 (2016)

    Article  Google Scholar 

  17. T. Wang, M. Yue, P. Xu, R. Wang, Z. Chen, Food Chem. 258, 278 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. T. Wang, P. Xu, Z. Chen, X. Zhou, R. Wang, Food Funct. 9, 4282 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. T. Wang, X. Chen, Q. Zhong, Z. Chen, R. Wang, A.R. Patel, Adv. Funct. Mater. 29, 1901830 (2019)

    Article  Google Scholar 

  20. J. Zhu, K. Li, H. Wu, W. Li, Q. Sun, Food Hydrocoll. 105, 105810 (2020)

    Article  Google Scholar 

  21. J.H. Lee, H. Zhou, S.Y. Cho, Y.S. Kim, Y.S. Lee, C.S. Jeong, Arch. Pharm. Res. 30, 1318 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. S. Shukla, S. Gupta, Pharm. Res. 27, 962 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Zhang, D. Liu, Y. Huang, Y. Gao, S. Qian, Int. J. Pharmaceut. 436, 311 (2012)

    Article  CAS  Google Scholar 

  24. X. Miao, Y. Hua, Int. J. Mol. Sci. 13, 1561 (2012)

    Article  Google Scholar 

  25. W. Horwitz, Association of Official Agricultural Chemists. Official methods of analysis (Vol. 222). Washington, DC (1975)

  26. T. Wang, P. Xu, Z. Chen, R. Wang, Food Hydrocoll. 84, 361 (2018)

    Article  CAS  Google Scholar 

  27. U.K. Laemmli, Nature 227, 680 (1970)

    Article  CAS  PubMed  Google Scholar 

  28. R. Wang, L. Li, W. Feng, T. Wang, Food Funct. 11, 7446 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Haskard, E.C.Y. Li-Chan, J. Agric. Food Chem. 46, 2671 (1998)

    Article  CAS  Google Scholar 

  30. L. Liu, P. Liu, X. Li, N. Zhang, C. Tang, J. Agric. Food Chem. 67, 6292 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Z. Wei, Q. Huang, Food Hydrocoll. 99, 105343 (2020)

    Article  CAS  Google Scholar 

  32. Z.B. Zhu, W.D. Zhu, J.H. Yi, N. Liu, Y.G. Cao, J.L. Lu, E.A. Decker, D.J. McClements, Food Res. Int. 106, 853 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. C. He, Y. Hu, Z. Liu, M.W. Woo, H. Xiong, Q. Zhao, Food Hydrocoll. 107, 105967 (2020)

    Article  CAS  Google Scholar 

  34. C. Wu, X. Wang, Phys. Rev. Lett. 80, 4092 (1998)

    Article  CAS  Google Scholar 

  35. C. Schmitt, C. Moitzi, C. Bovay, M. Rouvet, L. Bovetto, L. Donato, M.E. Leser, P. Schurtenbergerb, A. Stradnerb, Soft Matter 6, 4876 (2010)

    Article  CAS  Google Scholar 

  36. M. Sletmoen, E. Geissler, B.T. Stokke, Biomacromol 7, 858 (2006)

    Article  CAS  Google Scholar 

  37. G.J. He, Y.B. Yan, Biochem. Biophys. Rep. 18, 100626 (2019)

    PubMed  PubMed Central  Google Scholar 

  38. S. Yagai, K. Iwai, M. Yamauchi, T. Karatsu, A. Kitamura, S. Uemura, M. Morimoto, H. Wang, F. Würthner, Angew. Chem. Int. Ed. 126, 2640 (2014)

    Article  Google Scholar 

  39. Y. Zhang, E. Wright, Q. Zhong, J. Agric. Food Chem. 61, 947 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. H. Shigemitsu, T. Fujisaku, W. Tanaka, R. Kubota, S. Minami, K. Urayama, I. Hamachi, Nat. Nanotechnology. 13, 165 (2018)

    Article  CAS  Google Scholar 

  41. S.M. Kelly, N.C. Price, BBA-Protein Struct. M. 1338, 161 (1997)

    Article  CAS  Google Scholar 

  42. Y. Yang, R. Wang, W. Feng, X. Zhou, Z. Chen, T. Wang, Int. J. Biol. Macromol. 133, 93 (2019)

    Article  PubMed  Google Scholar 

  43. L. Nilsson, B. Halle, P. Natl, Acad. Sci. 102, 13867 (2005)

    Article  CAS  Google Scholar 

  44. M. Hirose, Trends Food Sci. Technol. 4, 48 (1993)

    Article  CAS  Google Scholar 

  45. S. Damodaran, K.L. Parkin, Fennema’s Food Chemistry, 5th edn. (CRC Press, Boca Raton, 2017)

    Google Scholar 

  46. G.V. Semisotnov, N.A. Rodionova, O.I. Razculyaev, V.N. Uversky, A.F. Cripas, R.I. Cilmanshinl, Biopolymers 31, 119 (1991)

    Article  CAS  PubMed  Google Scholar 

  47. B. Ding, H. Chen, C. Wang, Y. Zhai, G. Zhai, J. Nanosci. Nanotechnol. 13, 6546 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. Y. Huang, X. Zhao, Y. Zu, L. Wang, H. Wang, Iran. J. Pharm. Res. (IJPR). 18, 168 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Z. Marina, I. Amin, S.P. Loh, J. Fadhilah, K. Kartinee, Int. Food Res. J. 26, 1627 (2019)

    CAS  Google Scholar 

  50. R. Xu, L. Zheng, G. Su, D. Luo, M. Zhao, Food Chem. 343, 128555 (2020)

    Article  PubMed  Google Scholar 

  51. Y. Yuan, C. Hao, S. Liu, Y. Zhang, D. Wang, J. Agric, Food Chem. 67, 11977 (2019)

    Article  CAS  Google Scholar 

  52. L. Zhao, L. Zhang, L. Meng, J. Wang, G. Zhai, Drgu. Dev. Ind. Pharm. 39, 662 (2013)

    Article  CAS  Google Scholar 

  53. R. Karim, C. Palazzo, J. Laloy, A.S. Delvigne, S. Vanslambrouck, C. Jerome, E. Lepeltier, F. Orange, J.M. Dogne, B. Evrard, Int. J. Pharm. 532, 757 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the the National Natural Science Foundation of China (Grant NO. 31901602 & NO. 31778198), Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (NO. FMZ202005), and the National first-class discipline program of Food Science and Technology, China (NO. JUFSTR20180203).

Author information

Authors and Affiliations

Authors

Contributions

Fangsi Li: Conceptualization, methodology, investigation, writing-original draft preparation, writing-reviewing and editing, visualization. Tao Wang: Resources, writing-reviewing and editing, supervision. Wei Feng: Visualization, writing-reviewing and editing. Ren Wang: Resources, validation. Zhengxing Chen: Project administration, supervision. Dalong Yi: Conceptualization, funding acquisition.

Corresponding authors

Correspondence to Zhengxing Chen or Dalong Yi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Hydrocolloids were assembled by hydrophobic rice proteins and walnut proteins.

• The protein composites were designed as the delivery platform for apigenin.

• The in vitro bioaccessibility of apigenin was improved by the protein nanovehicle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, T., Feng, W. et al. Novel Protein Hydrocolloids Constructed by Hydrophobic Rice Proteins and Walnut Proteins as Loading Platforms for Nutraceutical Models. Food Biophysics 16, 427–439 (2021). https://doi.org/10.1007/s11483-021-09680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09680-0

Keywords

Navigation