Skip to main content
Log in

Modern Trends in the Processing of Linear Alpha Olefins into Technologically Important Products: Part I

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Linear alpha olefins (LAO) are a class of chemical compounds used in the production of such high-demand products as plasticizers, synthetic lubricants, surfactants, and co-polymers with improved performance. The world consumption of LAO derivatives grows annually, as does the role of LAO processing by scientific institutions, universities, and research departments of commercial companies. Analysis of the scientific literature of the last ten years revealed no general reviews of LAO processing. This work describes recent trends in the processing of LAOs that contain four or more carbon atoms into technologically important derivatives. It lists the main products obtained via LAO processing, along with the means of their production and applications. Existing technological processes for the production of LAO derivatives and the catalysts that are used are considered briefly. Current trends in LAO processing and promising ways to improve existing technologies are described, including the development of new types of catalysts. This review does not claim to be exhaustive, since its main purpose is to give a general idea of the major trends in LAO processing, the catalysts used in these processes, and current ways of improving them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. US Patent 6608142B1, 2003.

  2. US Patent 6849694B2, 2004.

  3. Camara Greiner, E.C. and Inoguchi, Y., Chemical Economics Handbook: Linear Alpha-Olefins, Menlo Park, CA: SRI Consulting, 2010.

    Google Scholar 

  4. Marquis, D., Sharman, S., House, R., and Sweeney, W., J. Am. Oil Chem. Soc., 1966, vol. 43, no. 11, pp. 607–614.

    Article  CAS  Google Scholar 

  5. Takada, H. and Ishiwatari, R., Environ. Sci. Technol., 1990, vol. 24., no. 1, pp. 86–91.

    Article  CAS  Google Scholar 

  6. Belov, G.P., Catal. Ind., 2014, vol. 6, no. 4, pp. 266–272.

    Article  Google Scholar 

  7. US Patent 6455648B1, 2002.

  8. EP Patent 0537609A, 1993.

  9. US Patent 3647906A, 1972.

  10. US Patent 4783573A, 1988.

  11. Anionic Surfactants: Organic Chemistry, Stache, H.W., Ed., Boca Raton, FL: CRC Press, 1995.

    Google Scholar 

  12. US Patent 3472910A, 1969.

  13. US Patent 9896391B2, 2018.

  14. Fedorov, A.E. and Cherkasova, E.I., Vestn. Kazan. Tekhnol. Univ., 2016, vol. 19, no. 7, pp. 60–65.

    CAS  Google Scholar 

  15. US Patent 4523045A, 1985.

  16. US Patent 4914075A, 1990.

  17. Jongsomjit, B., Kaewkrajang, P., Shiono, T., and Praserthdam, P., Ind. Eng. Chem. Res., 2004, vol. 43, no. 24, pp. 7959–7963.

    Article  CAS  Google Scholar 

  18. Kaminsky, W., Piel, C., and Scharlach, K., Macromol. Symp., 2005, vol. 226, no. 1, pp. 25–34.

    Article  CAS  Google Scholar 

  19. Al-Malaika, S. and Peng, X., Polym. Degrad. Stab., 2007, vol. 92, no. 12, pp. 2136–2149.

    Article  CAS  Google Scholar 

  20. Simanke, A.G., Galland, G.B., Freitas, L., da Jornada, J.A.H., Quijada, R., and Mauler, R.S., Polymer, 1999, vol. 40, no. 20, pp. 5489–5495.

    Article  CAS  Google Scholar 

  21. Kim, J.D. and Soares, J.B., J. Polym. Sci., Part A: Polym. Chem., 2000, vol. 38, no. 9, pp. 1427–1432.

    Article  CAS  Google Scholar 

  22. US Patent 4438238A, 1984.

  23. Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications, and Markets Set, Spalding, M.A. and Chatterjee, A., Eds., New York :Wiley, 2017.

    Google Scholar 

  24. Arndt, J.-H., Brüll, R., Macko, T., Garg, P., and Tacx, J., Polymer, 2018, vol. 156, pp. 214–221.

    Article  CAS  Google Scholar 

  25. De, S.K., White, J.R., and Limited, R.T., Rubber Technologist’s Handbook, Shawbury, UK: RAPRA Technology, 2001.

    Google Scholar 

  26. ExxonMobil Official Website. https://www.exxonmobilchemical.com/en?ln=productsservices. Cited April 9, 2021.

  27. Freeman, A., Mantell, S.C., and Davidson, J.H., Sol. Energy, 2005, vol. 79, no. 6, pp. 624–637.

    Article  CAS  Google Scholar 

  28. Polybutene Piping Systems Association Official Website. https://www.pbpsa.com/pb-1-properties. Cited April 9, 2021.

  29. RF Patent 2202019C2, 2003.

  30. Alpha Olefins Applications Handbook, Lappin, G.R. and Sauer, J.D., Eds, Boca Raton, FL: CRC Press, 1989.

    Google Scholar 

  31. Klaue, A., Kruck, M., Friederichs, N., Bertola, F., Wu, H., and Morbidelli, M., Ind. Eng. Chem. Res., 2018, vol. 58, no. 2, pp. 886–896.

    Article  CAS  Google Scholar 

  32. McDaniel, M.P., Adv. Catal., 2010, vol. 53, pp. 123–606.

    CAS  Google Scholar 

  33. Hamielec, A.E. and Soares, J.B., in Polypropylene. Polymer Science and Technology Series, Karger-Kocsis, J., Ed., Dordrecht: Springer, 1999, vol. 2, pp. 446–453.

    Google Scholar 

  34. Kaminsky, W., J. Polym. Sci., Part A: Polym. Chem., 2004, vol. 42, no. 16, pp. 3911–3921.

    Article  CAS  Google Scholar 

  35. Jeremic, D., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, pp. 1-42.

    Google Scholar 

  36. Langhauser, F., Kerth, J., Kersting, M., Kölle, P., Lilge, D., and Müller, P., Angew. Makromol. Chem., 1994, vol. 223, no. 1, pp. 155–164.

    Article  CAS  Google Scholar 

  37. Handbook of Thermoplastics, Olabisi, O. and Adewale, K., Eds., New York: Marcel Dekker, 1997.

    Google Scholar 

  38. US Patent 6838540B2, 2005.

  39. EP Patent 1131361B1, 2005.

  40. EP Patent 0453088B1, 1996.

  41. Ushakova, T.M., Starchak, E.E., Krasheninnikov, V.G., Samoilenko, A.A., Ivchenko, P.V., Nifant’ev, I.E., and Novokshonova, L.A., Kinet. Catal., 2012, vol. 53, no. 1, pp. 75–83.

    Article  CAS  Google Scholar 

  42. Czaja, K., Białek, M., and Utrata, A., J. Polym. Sci., Part A: Polym. Chem., 2004, vol. 42, no. 10, pp. 2512–2519.

    Article  CAS  Google Scholar 

  43. Fujita, T. and Kawai, K., Top. Catal., 2014, vol. 57, nos. 10–13, pp. 852–877.

  44. Makio, H., Terao, H., Iwashita, A., and Fujita, T., Chem. Rev., 2011, vol. 111, no. 3, pp. 2363–2449.

    Article  CAS  PubMed  Google Scholar 

  45. Furuyama, R., Mitani, M., Mohri, J., Mori, R., Tanaka, H., and Fujita, T., Macromolecules, 2005, vol. 38, no. 5, pp. 1546–1552.

    Article  CAS  Google Scholar 

  46. Gagieva, S.Ch., Tuskaev, V.A., Takazova, R.U., Buyanovskaya, A.G., Smirnova, O.V., Bravaya, N.M., and Bulychev, B.M., Russ. Chem. Bull., 2019, vol. 68, no. 11, pp. 2114–2118.

    Article  CAS  Google Scholar 

  47. Mun, T.C., Production of polyethylene using gas fluidized-bed reactor. https://www.coursehero.com/file/ 14723314/Production-of-Polyethylene-Using-Gas-Fluidized-Bed-Reactor/. Cited April 9, 2021.

  48. Applied Polymer Science: 21st Century, Craver, C.D., Carraher, C.E. Jr., Eds., Oxford: Elsevier, 2000.

    Google Scholar 

  49. Wagner, J.D., Lappin, G.R., and Zietz, J.R. in Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 2000. https://doi.org/10.1002/0471238961.1925142023010714.a01

  50. Apostolov, S.A., Babash, S.E., Belkina, E.I., and Berents, A.D., Novyi spravochnik khimika i tekhnologa. Syr’e i produkty promyshlennosti organicheskikh i neorganicheskikh veshchestv (New Chemist’s and Technologist’s Handbook: Raw Materials and Products of the Industry of Organic and Inorganic Substances), St. Petersburg: ANO NPO Professional, 2007, part 2.

  51. DE Patent 10227995A1, 2003.

  52. Zakzeski, J., Lee, H.R., Leung, Y.L., and Bell, A.T., Appl. Catal., A, 2010, vol. 374, nos. 1–2, pp. 201–212.

  53. Sandee, A.J., Reek, J.N., Kamer, P.C., and van Leeuwen, P.W., J. Am. Chem. Soc., 2001, vol. 123, no. 35, pp. 8468–8476.

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, K., Yamashita, M., and Nozaki, K., J. Am. Chem. Soc., 2012, vol. 134, no. 45, pp. 18746–18757.

    Article  CAS  PubMed  Google Scholar 

  55. Kamer, P.C., van Leeuwen, P.W., and Reek, J.N., Acc. Chem. Res., 2001, vol. 34, no. 11, pp. 895–904.

    Article  CAS  PubMed  Google Scholar 

  56. Conley, B.L., Pennington-Boggio, M.K., Boz, E., and Williams, T.J., Chem. Rev., 2010, vol. 110, no. 4, pp. 2294–2312.

    Article  CAS  PubMed  Google Scholar 

  57. Fogg, D.E. and dos Santos, E.N., Coord. Chem. Rev., 2004, vol. 248, nos. 21–24, pp. 2365–2379.

  58. Torres, G.M., Frauenlob, R., Franke, R., and Börner, A., Catal. Sci. Technol., 2015, vol. 5, no. 1, pp. 34–54.

    Article  CAS  Google Scholar 

  59. Srivastava, V.K., Shukla, R.S., Bajaj, H.C., and Jasra, R.V., Appl. Catal., A, 2005, vol. 282, nos. 1–2, pp. 31–38.

  60. Wu, L., Fleischer, I., Jackstell, R., Profir, I., Franke, R., and Beller, M., J. Am. Chem. Soc., 2013, vol. 135, no. 38, pp. 14306–14312.

    Article  CAS  PubMed  Google Scholar 

  61. Ropartz, L.C., Morris, R.E., Foster, D.F., and Cole-Hamilton, D.J., J. Mol. Catal. A: Chem., 2002, vols. 182–183, pp. 99–105.

  62. Takahashi, K. and Nozaki, K., Org. Lett., 2014, vol. 16, no. 22, pp. 5846–5849.

    Article  CAS  PubMed  Google Scholar 

  63. Konya, D., Almeida Leñero, K.Q., and Drent, E., Organometallics, 2006, vol. 25, no. 13, pp. 3166–3174.

    Article  CAS  Google Scholar 

  64. Cuny, G.D. and Buchwald, S.L., J. Am. Chem. Soc., 1993, vol. 115, no. 5, pp. 2066–2068.

    Article  CAS  Google Scholar 

  65. US4593127A, 1986.

  66. Pruett, R.L. and Smith, J.A., J. Org. Chem., 1969, vol. 34, no. 2, pp. 327–330.

    Article  CAS  Google Scholar 

  67. Arderne, C., Holzapfel, C.W., and Bredenkamp, T., ChemCatChem, 2016, vol. 8, no. 6, pp. 1084–1093.

    Article  CAS  Google Scholar 

  68. Suerbaev, K.A., Kudaibergenov, N.Z., and Vavasori, A., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, pp. 707–712.

    Article  CAS  Google Scholar 

  69. Chepaikin, E., Bezruchenko, A., Suerbaev, K.A., and Shalmagambetov, K., Pet. Chem., 2006, vol. 46, no. 2, pp. 117–121.

    Article  Google Scholar 

  70. Akiri, S.O. and Ojwach, S.O., Catalysts, 2019, vol. 9, no. 2, p. 143.

    Article  CAS  Google Scholar 

  71. US Patent 6331656B1, 2001.

  72. US Patent 7405329B2, 2008.

  73. US Patent 5105018A, 1992.

  74. Catalysis from A to Z: a Concise Encyclopedia, Cornils, B., Herrmann, W.A., Xu, J.-H., and Zanthoff, H.-W., Eds., Weinheim: Wiley-VCH, 2020.

  75. Rosales, M., González, A., González, B., Moratinos, C., Pérez, H., Urdaneta, J., and Sánchez-Delgado, R.A., J. Organomet. Chem., 2005, vol. 690, no. 12, pp. 3095–3098.

    Article  CAS  Google Scholar 

  76. Makado, G., Morimoto, T., Sugimoto, Y., Tsutsumi, K., Kagawa, N., and Kakiuchi, K., Adv. Synth. Catal., 2010, vol. 352, nos. 2–3, pp. 299–304.

  77. Cowan-Ellsberry, C., Belanger, S., Dorn, P., Dyer, S., McAvoy, D., Sanderson, H., Versteeg, D., Ferrer, D., and Stanton, K., Crit. Rev. Environ. Sci. Technol., 2014, vol. 44, no. 17, pp. 1893–1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hutchinson, E., Manchester, K.E., and Winslow, L., J. Phys. Chem., 1954, vol. 58, no. 12, pp. 1124–1127.

    Article  CAS  Google Scholar 

  79. Penfold, J., Thomas, R.K., Li, P., Petkov, J.T., Tucker, I., Cox, A.R., Hedges, N., Webster, J.R., and Skoda, M.W., Langmuir, 2014, vol. 30, no. 32, pp. 9741–9751.

    Article  CAS  PubMed  Google Scholar 

  80. Kosswig, K. in Ullmann’s Encyclopedia of Industrial Chemistry, New York: Wiley, 2000, pp. 431–505.

    Google Scholar 

  81. EP Patent 0082554B1, 1985.

  82. US Patent 5136106A, 1992.

  83. US Patent 4927954A, 1990.

  84. Di Serio, M., Lengo, P., Gobetto, R., Bruni, S., and Santacesaria, E., J. Mol. Catal. A: Chem., 1996, vol. 112, no. 2, pp. 235–251.

    Article  CAS  Google Scholar 

  85. US Patent 3328467A, 1967.

  86. US Patent 4223164A, 1980.

  87. US Patent 4210764A, 1980.

  88. Domingo, X., in Organic Chemistry: Alcohol and Alcohol Ether Sulfates, Stache, H.W., Ed., New York: Marcel Dekker, 1995, pp. 223–312.

    Google Scholar 

  89. US Patent 3370926A, 1968.

  90. US Patent 3337601A, 1967.

  91. EA Patent 200101220A1, 2002.

  92. Cox, M.F., J. Am. Oil Chem. Soc., 1989, vol. 66, no. 11, pp. 1637–1646.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-73-30032.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. S. Golub’, V. A. Bolotov or V. N. Parmon.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golub’, F.S., Bolotov, V.A. & Parmon, V.N. Modern Trends in the Processing of Linear Alpha Olefins into Technologically Important Products: Part I. Catal. Ind. 13, 168–186 (2021). https://doi.org/10.1134/S2070050421020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421020069

Keywords:

Navigation