Skip to main content
Log in

Design of Simple Robust Controllers for Time-Invariant Dynamic Systems

  • CONTROL IN DETERMINISTIC SYSTEMS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

This paper considers the problem of designing dynamic controllers with a simple structure for a linear time-invariant dynamic system with a scalar control, a vector feedback channel, and a perturbation. A simple controller is a controller whose structure cannot be simplified: an attempt to eliminate any controller element will make the designed system not satisfy the requirements. The robustness of the designed system is ensured using the original index of the controller’s roughness. Among all simple controllers, this index allows identifying the one that provides the system with the maximum robustness. A method for solving the design problem is proposed and an illustrative example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. V. Solodovnikov, “Synthesis of corrective devices of the tracking systems with typical effects,” Avtom. Telemekh. 12, 352–388 (1951).

    Google Scholar 

  2. V. V. Solodovnikov and V. L. Lenskii, “Synthesis of minimum complexity management systems,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 2, 56–68 (1966).

  3. V. V. Solodovnikov, V. F. Biryukov, and V. I. Tumarkin, The Principle of Complexity in Control Theory (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  4. V. Solodovnikov, “Poorly defined problems of stochastic optimization and their solution with the aid of the principle of complexity,” IFAC Proc. Vols. 10, 649–651 (1977).

  5. V. V. Solodovnikov and V. I. Tumarkin, Complexity Theory and Design of Control Systems (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  6. Yu. I. Paraev and V. I. Smagina, “Tasks to simplify the structure of optimal regulators,” Avtom. Telemekh., No. 6, 180–183 (1975).

  7. A. Balestrino and G. Celentano, “CAD of minimal order controllers,” IFAC Proc. Vols. 12 (7), 1–8 (1979).

  8. A. Balestrino and G. Celentano, “Dynamic controllers in linear multivariable systems,” Automatica 17, 631–636 (1981).

    Article  MathSciNet  Google Scholar 

  9. A. R. Gaiduk, “Selection of reverse links in the minimum complexity control system,” Avtom. Telemekh., No. 5, 29–37 (1990).

  10. L. H. Kell and S. P. Bhattacharyya, “State-space design of low-order stabilizers,” IEEE Trans. Autom. Control 35, 182–186 (1990).

    Article  MathSciNet  Google Scholar 

  11. D. W. Gu, B. W. Choi, and I. Postlethwaite, “Low-order stabilizing controllers,” IEEE Trans. Autom. Control 38, 1713–1717 (1993).

    Article  MathSciNet  Google Scholar 

  12. Q. G. Wang, T. H. Lee, and J. B. He, “Low-order stabilizers for linear systems,” Automatica 33, 651–654 (1997).

    Article  MathSciNet  Google Scholar 

  13. J. C. Fan and T. Kobayashi, “A simple adaptive PI controller for linear systems with constant disturbances,” IEEE Trans. Autom. Control 43, 733–736 (1998).

    Article  MathSciNet  Google Scholar 

  14. P. Grieder, M. Kvasnica, M. Baotić, and M. Morari, “Stabilizing low complexity feedback control of constrained piecewise affine systems,” Automatica 41, 1683–1694 (2005).

    Article  MathSciNet  Google Scholar 

  15. H. Sano, “Low order stabilizing controllers for a class of distributed parameter systems,” Automatica 92, 49–55 (2018).

    Article  MathSciNet  Google Scholar 

  16. J. Bu and M. Sznaier, “A linear matrix inequality approach to synthesizing low-order suboptimal mixed 𝓁1/H p controllers,” Automatica 36, 957–963 (2000).

    Article  MathSciNet  Google Scholar 

  17. K. M. Grigoriadis and R. E. Skelton, “Low-order control design for LMI problems using alternating projection methods,” Automatica 32, 1117–1125 (1996).

    Article  MathSciNet  Google Scholar 

  18. S. Wang and J. H. Chow, “Low-order controller design for SISO systems using coprime factors and LMI,” IEEE Trans. Autom. Control 45, 1166–1169 (2000).

    Article  MathSciNet  Google Scholar 

  19. S. P. Bhattacharyya, H. Shapellat, and L. Keel, Robust Control: the Parametric Approach (Prentice Hall, Upper Saddle River, NJ, 1995).

    Google Scholar 

  20. O. N. Kiselev and B. T. Polyak, “Synthesis of low-order controllers by criterion H and by the criterion of maximum robustness,” Avtom. Telemekh., No. 3, 119–130 (1999).

  21. V. I. Goncharov, A. V. Liepin’sh, and V. A. Rudnitskii, “Synthesis of low-order robust controllers,” J. Comput. Syst. Sci. Int. 40, 542 (2001).

    MATH  Google Scholar 

  22. E. N. Gryazina, B. T. Polyak, and A. A. Tremba, “Design of the low-order controllers by the H criterion: A parametric approach,” Autom. Remote Control 68, 456 (2007).

    Article  MathSciNet  Google Scholar 

  23. O. S. Kozlov and L. M. Skvortsov, “Synthesis of simple robust controllers,” Autom. Remote Control 76, 1598 (2015).

    Article  MathSciNet  Google Scholar 

  24. B. D. O. Anderson and Y. Liu, “Controller reduction: Concepts and approaches,” IEEE Trans. Autom. Control 34, 802–812 (1989).

    Article  MathSciNet  Google Scholar 

  25. D. Mustafa and K. Glover, “Controller reduction by H -balanced truncation,” IEEE Trans. Autom. Control 36, 668–683 (1991).

    Article  MathSciNet  Google Scholar 

  26. V. V. Dombrovskii, “Reducing the order of linear multidimensional systems with H restrictions,” Avtom. Telemekh., No. 4, 123–132 (1994).

  27. V. V. Dombrovskii, “Synthesis of dynamic regulators of reduced order at H restrictions,” Avtom. Telemekh., No. 11, 10–17 (1996).

  28. V. V. Apolonskii and S. V. Tararykin, “Methods for the synthesis of reduced state controllers of linear dynamic systems,” J. Comput. Syst. Sci. Int. 53, 799 (2014).

    Article  MathSciNet  Google Scholar 

  29. V. V. Apolonskii, L. G. Kopylova, and S. V. Tararykin, “Reducing controllers of linear dynamic systems based on the analysis of physical features of the plant,” J. Comput. Syst. Sci. Int. 55, 683 (2016).

    Article  MathSciNet  Google Scholar 

  30. M. G. Zotov, “Algorithm for synthesizing optimal controllers of given complexity,” J. Comput. Syst. Sci. Int. 56, 343 (2017).

    Article  MathSciNet  Google Scholar 

  31. V. A. Mozzhechkov, “Design of simple-structure linear controllers,” Autom. Remote Control 64, 23 (2003).

    Article  MathSciNet  Google Scholar 

  32. V. A. Mozzhechkov, Simple Structures in the Control Theory (TulGU, Tula, 2000) [in Russian].

  33. S. P. Bhattacharyya, “Robust control under parametric uncertainty: An overview and recent results,” Ann. Rev. Control 44, 45–77 (2017).

    Article  Google Scholar 

  34. V. V. Voevodin, Linear Algebra (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  35. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, NJ, 1977).

    MATH  Google Scholar 

  36. P. D. Krut’ko, Control of Executive Systems of Robots (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mozzhechkov.

Additional information

Translated by A. Mazurov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozzhechkov, V.A. Design of Simple Robust Controllers for Time-Invariant Dynamic Systems. J. Comput. Syst. Sci. Int. 60, 353–363 (2021). https://doi.org/10.1134/S1064230721030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230721030126

Navigation