Skip to main content
Log in

The Influence of Composition on the Solidification Path and Microstructure of HP-Nb Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Austenitic stainless steels such as 25Cr-35Ni-Nb, HP-Nb alloys are commonly used in high-temperature applications above 850 °C. The HP-Nb alloys are used in the as-cast condition and exhibit good creep properties due to chromium and niobium eutectic carbide strengthening. The size, morphology and distribution of these carbides are related to the nominal composition and solidification conditions, which result in differences in mechanical properties. Although previous work has provided qualitative relations between composition and microstructure, there is insufficient quantitative information regarding the influence of composition on the solidification behavior and resultant microstructure. Therefore, the objective of this study is to improve the understanding of the solidification of HP-Nb alloys through the development of a quantitative model. A systematic matrix of 12 alloys was characterized via quantitative image analysis, differential thermal analysis and electron microprobe analysis. A quantitative solute redistribution model was developed using solidification equations and an experimentally derived γ-C-Cr-Nb, pseudo-quaternary liquidus projection. The quantitative model was validated for three experimental alloys and two industrial alloys, with good agreement between the measured and predicted percent total eutectic. Experimental results indicate that the volume fraction of chromium carbides are primarily controlled by carbon additions and niobium carbides are primarily controlled by niobium additions. The results of this work show the novel development and application of a pseudo-quaternary liquidus projection and improves the understanding of the relationship between composition and the solidification of austenitic stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.C. McLeod, C.M. Bishop, K.. Stevens, and M.V. Kral: Microsc. Microanal., 2016, vol. 21, pp. 453–4.

    Article  Google Scholar 

  2. J. Guo, C. Cheng, H. Li, J. Zhao, and X. Min: Eng. Fail. Anal., 2017, vol. 79, pp. 625–33.

    Article  CAS  Google Scholar 

  3. ASTM International: Annu. B. ASTM Stand., 2014, vol. i, p. 4.

  4. A. American and N. Standard: Current, 1998, vol. 01, pp. 1–5.

    Google Scholar 

  5. F. Wang and D.O. Northwood: Mater. Charact., 1993, vol. 31, pp. 3–10.

    Article  CAS  Google Scholar 

  6. J.C. Lippold and D.J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, John Wiley, New York, 2005.

    Google Scholar 

  7. K.G. Buchanan and M. V. Kral: Metall. Mater. Trans. A, 2012, vol. 43, pp. 1760–9.

    Article  Google Scholar 

  8. K.G. Buchanan, M. V. Kral, and C.M. Bishop: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3373–85.

    Article  Google Scholar 

  9. S.J. Zhu, D.J. Li, Y. Wang, W.Q. Tian, S.G. Xu, and F.G. Wang: Mater. Sci. Technol., 1990, vol. 6, pp. 1193–8.

    Article  CAS  Google Scholar 

  10. G.D. de Almeida Soares, L.H. de Almeida, T.L. da Silveira, and I. Le May: Mater. Charact., 1992, vol. 29, pp. 387–96.

  11. B. Piekarski: Mater. Charact., 2010, vol. 61, pp. 899–906.

    Article  CAS  Google Scholar 

  12. A.R. Andrade, C. Bolfarini, L.A.M. Ferreira, A.A.A. Vilar, C.D. Souza Filho, and L.H.C. Bonazzi: Mater. Sci. Eng. A, 2015, vol. 628, pp. 176–80.

  13. Metallography: Principles and Practice, vol. 18, 1985.

  14. J.D. Geller and P.D. Engle: Sample Preparation for Electron Probe Microanalysis-Pushing the Limits, vol. 107.

  15. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad Comput. Coupling Phase Diagrams Thermochem., 2002, vol. 26, pp. 273–312.

    Article  CAS  Google Scholar 

  16. R. Smith: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3258–79.

  17. D. Senk, E. Erdem, and S. Stratemeier: in International Journal of Cast Metals Research, vol. 22, 2009, pp. 94–8.

  18. M.N. Gungor: Metall. Trans. A, 1989, vol. 20, pp. 2529–33.

    Article  Google Scholar 

  19. J.J. Donovan, D. Kremser, J.H. Fournelle, and K. Goemann: 2012.

  20. C. Sievert: Interactive Web-Based Data Visualization with R, Plotly, and Shiny, 2020.

  21. B. Dutta and M. Rettenmayr: Mater. Sci. Technol., 2002, vol. 18, pp. 1428–34.

    Article  CAS  Google Scholar 

  22. B. Dutta, O. Pompe, and M. Rettenmayr: Mater. Sci. Technol., 2004, vol. 20, pp. 1011–8.

    Article  CAS  Google Scholar 

  23. D.F. Susan, C. V. Robino, M.J. Minicozzi, and J.N. DuPont: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2006, vol. 37, pp. 2817–25.

  24. B.R. Krzysztof Jan Kurzydlowski: The Quantitative Description of the Microstructure of Materials

  25. B. Dutta and M. Rettenmayr: Mater. Sci. Technol., 2003, vol. 18, pp. 1428–34.

    Article  Google Scholar 

  26. E. Scheil: Zeitschrift für Met., 1942, vol. 34, pp. 70–2.

    Google Scholar 

  27. Sindo Kou: Metallurgy Second Edition Welding Metallurgy, vol. 822, 2003.

  28. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–34.

    Article  CAS  Google Scholar 

  29. J.W. Gibbs, C. Schlacher, A. Kamyabi-Gol, P. Mayr, and P.F. Mendez: Metall. Mater. Trans. A, 2015, vol. 46, pp. 148–55.

    Article  Google Scholar 

  30. W.J. Boettinger, U.R. Kattner, and K.-W. Moon. 10.6028/NBS.SP.960-15.

  31. J. Laigo, F. Christien, R. Le Gall, F. Tancret, and J. Furtado: Mater. Charact., 2008, vol. 59, pp. 1580–6.

    Article  CAS  Google Scholar 

  32. S.Y. Kondrat’ev, G.P. Anastasiadi, S.N. Petrov, A. V. Ptashnik, and E. V. Svyatysheva: Met. Sci. Heat Treat. 10.1007/s11041-016-9958-y.

  33. K. Wieczerzak, P. Bała, T. Tokarski, and M. Gajewska: in Acta Physica Polonica A, vol. 130, Polish Academy of Sciences, 2016, pp. 1007–9.

  34. J.A. Dantzig and M. Rappaz: Solidification: 2nd Edition - Revised & Expanded, EPFL Press, 2016.

  35. G.D. Barbabela, L.H. De Almeida, T. Luiz, C. Ufrj, P.O. Box, and R. De Janeiro: 1991, vol. 197, pp. 193–97.

  36. J.N. Dupont and I. Introduction: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1937–47.

    Article  Google Scholar 

  37. J.N. DuPont, C.V. Robino, A.R. Marder, and M.R. Notis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2797–806.

    Article  CAS  Google Scholar 

  38. R. Kesri and M. Durand-Charre: Phase Equilibria, Solidification and Solid-State Transformations of White Cast Irons Containing Niobium, vol. 22, 1987.

  39. J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, New York 2011.

    Google Scholar 

  40. C.J. Farnin, S. Orzolek, and J.N. DuPont: Metall. Mater. Trans. A. 10.1007/s11661-020-05986-9.

  41. M.J. Cieslak, T.J. Headley, T. Kollie, and A.D. Romig: A Melting and Solidification Study of Alloy 625.

  42. M. Attarian, A. Karimi Taheri, N. Varahram, and P. Davami: Int. J. Cast Met. Res., 2017, vol. 30, pp. 112–22.

  43. J.N. Dupont, C. V. Robino, and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 4781–90.

    Article  CAS  Google Scholar 

  44. B. Radhakrishnan and R.G. Thompson: 1991, vol. 22, pp. 887–902.

Download references

Acknowledgments

The authors would like to acknowledge Diana David and Dave Poweleit from the Steel Founders Society. Professor Charles Monroe and John Griffin at the University of Alabama Birmingham for the casting of the experimental wedges. Jessica Porter and Roger Broman from MetalTek as well as Ryan Richter and Roman Pankiw from Duraloy for providing industrial centrifugally cast material for comparison. This research is sponsored by the DLA-Troop Support, Philadelphia, PA and the Defense Logistics Agency Information Operations, J68, Research & Development, Ft. Belvoir, VA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Orzolek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 30, 2021; accepted April 25, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orzolek, S., DuPont, J.N. The Influence of Composition on the Solidification Path and Microstructure of HP-Nb Alloys. Metall Mater Trans A 52, 3423–3435 (2021). https://doi.org/10.1007/s11661-021-06314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06314-5

Navigation