Skip to main content

Advertisement

Log in

Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide-dispersion strengthened steels are promising materials for extreme service conditions including nuclear reactors core. In service conditions, nuclear fuel claddings are exposed to the fission gas pressure at temperatures about 700 °C. This paper presents novel results on ODS creep properties from a round robin of inner gas pressure creep test. A gas pressure creep test, simulating fission gas loading, was designed and achieved by four different European teams. Lifetime and specific behavior of ODS steel tube are prospected. Based on a mechanical clamping achieving gas tightness, short length tubes samples are tested by different laboratories. In situ laser measurements exhibit the radial expansion of ODS steel tubes before failure. Post-mortem, geometrical characterizations are performed to determine hoop strains at failure. A consistent creep lifetime is observed by all the teams even with slightly different testing apparatus and clamping systems. Under inner gas pressure, ODS steels exhibit a typical failure by leakage associated to a very small radial expansion. This behavior results from a brutal failure (burst) without evidence of tertiary creep stage. This failure mode of ODS cladding in creep conditions is consistently observed on all samples of the study. Inner gas pressure creep tests were compared, for the first time, by four European laboratories on ODS steel tube. This technique, simulating the fission gas pressure loading, is applied on small and mechanically clamped samples. This technique shows a remarkable consistency between the different laboratories results and demonstrates to be efficient for ODS steel cladding tube qualification. The results show a correlation between the creep properties and the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. [1] B. Gwinner, M. Auroy, D. Mas, A. Saint-Jevin, S. Pasquier-Tilliette, Journal of Nuclear Materials, (2012), 428, 110-116.

    Article  CAS  Google Scholar 

  2. I. ProriolSerre, O. Hamdane, J.-B. Vogt, Nuclear Engineering and Design, (2017), 320, 17-27.

    Article  CAS  Google Scholar 

  3. [3] P. Yvon, F. Carre, Journal of Nuclear Materials, (2009), 385, 217-222.

    Article  CAS  Google Scholar 

  4. [4] T. Chen, E. Aydogan, J.G. Gigax, D. Chen, J. Wang, X. Wang, S. Ukai, F.A. Garner, L. Shao, Journal of Nuclear Materials, (2015), 467, 42-49.

    Article  CAS  Google Scholar 

  5. [5] R.L. Klueh, Philosophical Magazine, (2018), 98:28 2618-2636.

    Article  CAS  Google Scholar 

  6. [6] Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, Journal of Nuclear Materials, (2009), 386-388, 430-432.

    Article  Google Scholar 

  7. [7] T. Kaito, Y. Yano, S. Ohtsuka, M. Inoue, K. Tanaka, A.E. Fedoseev, A.V. Povstyanko, A. Novoselov, Journal of Nuclear Science and Technology, (2013), 50:4, 387-399.

    Article  CAS  Google Scholar 

  8. [8] G.R. Odette, Scripta Materialia, (2018), 143, 142-148.

    Article  CAS  Google Scholar 

  9. S. Ukai (Ed.) Microstructure and high temperature strength of 9Cr ODS ferritic steel., 2011.

  10. [10] J. Malaplate, F. Mompiou, J.L. Béchade, T. Van Den Berghe, M. Ratti, Journal of Nuclear Materials, (2011), 417, 205-208.

    Article  CAS  Google Scholar 

  11. [11] R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara, Journal of Nuclear Materials, (2002), 307-311, 773-777.

    Article  Google Scholar 

  12. H. Salmon-Legagneur, S. Vincent, J. Garnier, et al., Material Sciences and Engineering, (2018), A722, 231-241.

    Article  Google Scholar 

  13. [13] T. Tanno, Y. Yano, H. Oka, S. Ohtsuka, T. Uwaba, T. Kaito, Nuclear Materials and Energy, (2016), 9, 353-359.

    Article  Google Scholar 

  14. [14] Y. Li, J. Zhang, Y. Shan, W. Yan, Q. Shi, K. Yang, J. Shen, T. Nagasasa, T. Muroga, H. Yang, S. Kano, H. Abe, Journal of Nuclear Materials, (2019), 517, 307-314.

    Article  CAS  Google Scholar 

  15. [15] T. Jaumier, S. Vincent, L. Vincent, R. Desmorat, Journal of Nuclear Materials, (2019), 518, 274-286.

    Article  CAS  Google Scholar 

  16. [16] D.L. Sornin, A. Karch, R.E. Logé, Journal of Materials Science, (2018), 53, 2965-2975.

    Article  CAS  Google Scholar 

  17. [17] L. Toualbi, C. Cayron, P. Olier, R. Logé, Y. de Carlan, Journal of Nuclear Materials, (2013), 442, 410-416.

    Article  CAS  Google Scholar 

  18. [18] T. Kaito, S. Ohtsuka, M. Inoue, T. Asayama, T. Uwaba, S. Mizuta, S. Ukai, T. Furukawa, C. Ito, E. Kagota, R. Kitamura, T. Aoyama, T. Inoue, Journal of Nuclear Materials, (2009), 386-388, 294-298.

    Article  Google Scholar 

  19. [19] P. Dubuisson, Y. de Carlan, V. Garat, M. Blat, Journal of Nuclear Materials, (2012), 428, 6-12.

    Article  CAS  Google Scholar 

  20. [20] O. Doyen, B.L. Gloannec, A. Deschamps, F.D. Geuser, C. Pouvreau, A. Poulon-Quintin, Journal of Nuclear Materials, (2019), 518, 326-333.

    Article  CAS  Google Scholar 

  21. G. Cao, NEUP report 10-925 (University of Wisconsin-Madison), (2013), 22.

  22. M.J. Bird, Monterey, California: Naval Postgraduate School. report 2014-6. http://hdl.handle.net/10945/42582 (2014), 91.

  23. [23] M. Inoue, T. Kaito, S. Ohtsuka, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels, in: V. Ghetta, D. Gorse, D. Mazière, V. Pontikis (Eds.), Materials Issues for Generation IV Systems, Springer Netherlands, Dordrecht, 2008, pp. 311-325.

    Chapter  Google Scholar 

  24. [24] S. Ukai, R. Miyata, S. Kasai, N. Oono, S. Hayashi, T. Azuma, R. Kayano, E. Maeda, S. Ohtsuka, Materials Letters, (2017), 209, 581-584.

    Article  CAS  Google Scholar 

  25. Pohja, R., Moilanen, P., Rantala, J., Huotilainen, S., Tulkki, V., Ehrnstén, U., Holmström, S.: Athens Journal of Sciences 3: 227-240 (2016)

    Article  Google Scholar 

  26. [26] C. Cayron, A. Montani, D. Venet, Y. De Carlan, Journal of Nuclear Materials, (2010), 399, 219-224.

    Article  CAS  Google Scholar 

  27. S. Ukai, R.J.M. Konings, 4.08 - Oxide Dispersion Strengthened Steels, Comprehensive Nuclear Materials, Elsevier, Oxford, 2012, pp. 241–71.

  28. [28] T. Yamashiro, S. Ukai, N. Oono, S. Ohtsuka, T. Kaito, Journal of Nuclear Materials, (2016), 472, 247-251.

    Article  CAS  Google Scholar 

  29. N. Roduit, JMicroVision. https://jmicrovision.github.io/, 2020.

  30. [30] E. Oñorbe, M. Hernández-Mayoral, A. Morrison, M. Serrano, Nuclear Materials and Energy, (2019), 20, 100698.

    Article  Google Scholar 

  31. “Online ILL data” https://doi.ill.fr/10.5291/ILL-DATA.1-01-146. 2015.

  32. [32] J.-L. Lin, K. Mo, D. Yun, Y. Miao, X. Liu, H. Zhao, D.T. Hoelzer, J.-S. Park, J. Almer, G. Zhang, Z. Zhou, J.F. Stubbins, A.M. Yacout, Journal of Nuclear Materials, (2016), 471, 289-298.

    Article  CAS  Google Scholar 

  33. [33] M.H. Mathon, M. Perrut, S.Y. Zhong, Y. de Carlan, Journal of Nuclear Materials, (2012), 428, 147-153.

    Article  CAS  Google Scholar 

  34. [34] T. Tanno, S. Ohtsuka, Y. Yano, T. Kaito, Y. Oba, M. Ohnuma, S. Koyama, K. Tanaka, Journal of Nuclear Materials, (2013), 440, 568-574.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the MatISSE European H2020 program. We kindly thank Elodie ROUESNE (CEA) for SEM-EBSD characterization of materials and Sébastien VINCENT for his contribution to creep matrix definition. The SAFIR2018 programme is acknowledged for development of the Crebello biaxial testing system at VTT. At EDF, Emmanuelle SCHOENER (EDF) for creep test performance, Martine BLAT (EDF) for material discussions and Frédéric DELABROUILLE (EDF) for microscopic investigations are acknowledged.

Author Contributions

DS contributed to resources, writing—original draft, and investigation. UE contributed to supervision, conceptualization, resources, and summarizing results. JR contributed to methodology, investigation, and data curation. MW contributed to resources and investigations. AH contributed to investigation and methodology. LF contributed to investigation and methodology. AU was involved in investigation and writing—review and editing. NM contributed to resources, methodology, and investigations. SG contributed to concept and resources. EO contributed to investigation and data curation. MH-M contributed to investigation, data curation, and writing—original draft. YC contributed to concept and supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sornin.

Ethics declarations

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study

Conflict of interest

The authors declare that they have no conflict of interest.

Annex

Tube creep matrix table for 9Cr ODS and 14Cr ODS steel

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 6, 2020, accepted May 7, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sornin, D., Ehrnstén, U., Mozzani, N. et al. Creep Properties of 9Cr and 14Cr ODS Tubes Tested by Inner Gas Pressure. Metall Mater Trans A 52, 3541–3552 (2021). https://doi.org/10.1007/s11661-021-06327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06327-0

Navigation