Skip to main content
Log in

Generalized Dirac Equation for a particle in a gravitational field

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The existence of a minimal observable length modifies the Heisenberg’s uncertainty principle at Plank scales and leads to some modifications of the Dirac equation. Here, we consider the generalized uncertainty principle (GUP) theory in order to deduce a generalized Dirac equation and solve its eigenvalue problem for a particle within a gravitational field created by a central mass. We use two different approximations to tackle the problem, based on the Schwarzschild and a modified Schwarzschild metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.J., Chen, P., Santiago, D.I.: The generalized uncertainty principle and black hole remnants. Gen. Relativ. Gravit. 33, 2101–2108 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  2. Adler, R.J., Santiago, D.I.: On gravity and the uncertainty principle. Mod. Phys. Lett. A 14, 1371 (1999)

    Article  ADS  Google Scholar 

  3. Akhoury, R., Yao, Y.P.: Minimal length uncertainty relation and the hydrogen spectrum. Phys. Lett. B 572, 37–42 (2003)

    Article  ADS  Google Scholar 

  4. Amati, D., Ciafaloni, M., Veneziano, G.: Superstring collisions at Planckian energies. Phys. Lett. B 197, 81–88 (1987)

    Article  ADS  Google Scholar 

  5. Arminjon, M.: Dirac-type equations in a gravitational field with vector wave function. Found. Phys. 38, 1020–1045 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bosso, P., Das, S., Todorinov, V.: Quantum field theory with the generalized uncertainty principle I: Scalar electrodynamics. Ann. Phys. 422, 168319 (2020)

  7. Bosso, P., Das, S., Todorinov, V.: Quantum field theory with the generalized uncertainty principle II: Quantum Electrodynamics. Ann. Phys. 424, 168350 (2021)

  8. Bosso, P. Obregón, O.: Minimal length effects on quantum cosmology and quantum black hole models, Class. Quantum Gravit. 37(4), 045003 (2020)

  9. Bosso, P., Obregón, O., Rastgoo, S., Yupanqui, W.: Deformed algebra and the effective dynamics of the interior of black holes, 2012.04795

  10. Brau, F.: Minimal length uncertainty relation and the hydrogen atom. J. Phys. A 32, 7691–7696 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Buoninfante, L., Luciano, G.G., Petruzziello, L.: Generalized uncertainty principle and corpuscular gravity, Eur. Phys. J. C 79(8), 663 (2019)

  12. Camacho, A.: Generalized uncertainty principle and quantum electrodynamics. Gen. Relativ. Gravit 35, 1153–1160 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. Capozziello, S., Lambiase, G., Scarpetta, G.: Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39, 15–22 (2000)

    Article  MathSciNet  Google Scholar 

  14. Castro, C.: String theory, scale relativity and the generalized uncertainty principle. Found. Phys. Lett. 10, 273–293 (1997)

    Article  MathSciNet  Google Scholar 

  15. Chemisana, D., Giné, J., Madrid, J.: Dirac equation from the extended uncertainty principle. Physica Scripta 96(6), 065311 (2021)

  16. Das, A., Das, S., Vagenas, E.C.: Discreteness of space from GUP in strong gravitational fields. Phys. Lett. B 809, 135772 (2020)

  17. Das, S., Vagenas, E.C., Farag Ali, A.: Discreteness of space from GUP II. Relativistic wave equations. Phys. Lett. B 690, 407–412 (2010)

    Article  ADS  Google Scholar 

  18. Farag Ali, A., Das, S., Vagenas, E.C.: Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678, 497–499 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–165 (1995)

    Article  ADS  Google Scholar 

  20. Giné, J.: Quantum fluctuations and the slow accelerating expansion of the Universe. Europhys. Lett. 125, 50002 (2019)

    Article  ADS  Google Scholar 

  21. Giné, J.: Present value of the Universe’s acceleration. Europhys. Lett. 129(1), 19001 (2020)

  22. Guida, R., Konishi, K., Provero, P.: On the short distance behavior of string theories. Mod. Phys. Lett. A 6(16), 1487–1503 (1991)

    Article  ADS  Google Scholar 

  23. Hassanabadi, H., Zarrinkamar, S., Maghsoodi, E.: Minimal length Dirac equation revisited. Eur. Phys. J. Plus 128, 25 (2013)

    Article  Google Scholar 

  24. Hossenfelder, S.: The minimal length and large extra dimensions. Mod. Phys. Lett. A 19, 2727–2744 (2004)

    Article  ADS  Google Scholar 

  25. Hossenfelder, S., et al.: Signatures in the Planck regime. Phys. Lett. B 575, 85–99 (2003)

    Article  ADS  Google Scholar 

  26. Kalyana Rama, S.: Some consequences of the generalised uncertainty principle, statistical mechanical, cosmological, and varying speed of light. Phys. Lett. B 519, 103–110 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  27. Kato, M.: Particle theories with minimum observable length and open string theory. Phys. Lett. B 245, 43–47 (1990)

    Article  ADS  Google Scholar 

  28. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  29. Kokea, C., Nohb, C., Angelakis, D.G.: Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays. Ann. Phys. 374, 162–178 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  30. Maggiore, M.: The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83–86 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  31. Nozari, K., Karami, M.: Minimal length and generalized Dirac equation. Mod. Phys. Lett. A 20, 3095–3103 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Nozari, K., Mehdipour, S.H.: Gravitational uncertainty and black hole remnants. Mod. Phys. Lett. A 20(38), 2937–2948 (2005)

    Article  ADS  Google Scholar 

  33. Quesne, C., Tkachuk, V.M.: Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem. J. Phys. A: Math. Gen. 37, 4267 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  34. Quesne, C., Tkachuk, V.M.: Lorentz-covariant deformed algebra with minimal length. Czech J. Phys. 56, 1269–1274 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  35. Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro-black hole Gedanken experiment. Phys. Lett. B 452, 39–44 (1999)

    Article  ADS  Google Scholar 

  36. Scardigli, F.: The deformation parameter of the generalized uncertainty principle. J. Phys.: Conf. Ser. 1275, 012004 (2019)

  37. Scardigli, F., Casadio, R.: Generalized uncertainty principle, extra-dimensions and holography. Class. Quant. Gravit. 20, 3915–3926 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  38. Scardigli, F., Casadio, R.: Generalized uncertainty principle, classical mechanics and general relativity. Phys. Lett. B 807, 135558 (2020)

  39. Shokrollahi, A.: Free motion of a Dirac particle with a minimum uncertainty in position. Rep. Math. Phys. 70(1), 1–13 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  40. Todorinov, V., Bosso, P., Das, S.: Relativistic generalized uncertainty principle. Ann. Phys. 405, 92–100 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  41. Villalba, V.M.: The angular momentum operator in the Dirac equation. Eur. J. Phys. 15, 191–198 (1994)

    Article  Google Scholar 

  42. Veneziano, G.: A stringy nature needs just two constants, Europhys. Lett. 2(3), 199 (1986)

  43. Yesiltas, Ö.: Dirac equation in the curved spacetime and generalized uncertainty principle: a fundamental quantum mechanical approach with energy-dependent potentials. Eur. Phys. J. Plus 134, 331 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by a MINECO/ FEDER Grant Number PID2020-113758GB-I00 and an AGAUR (Generalitat de Catalunya) Grant Number 2017SGR 1276 and Icrea Academia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Giné.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemisana, D., Giné, J. & Madrid, J. Generalized Dirac Equation for a particle in a gravitational field. Gen Relativ Gravit 53, 65 (2021). https://doi.org/10.1007/s10714-021-02834-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02834-y

Keywords

Navigation