Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2021

Characteristic cycle and wild ramification for nearby cycles of étale sheaves

  • Haoyu Hu and Jean-Baptiste Teyssier EMAIL logo

Abstract

In this article, we give a bound for the wild ramification of the monodromy action on the nearby cycles complex of a locally constant étale sheaf on the generic fiber of a smooth scheme over an equal characteristic trait in terms of Abbes and Saito’s logarithmic ramification filtration. This provides a positive answer to the main conjecture in [24] for smooth morphisms in equal characteristic. We also study the ramification along vertical divisors of étale sheaves on relative curves and abelian schemes over a trait.

Award Identifier / Grant number: 11901287

Award Identifier / Grant number: BK20190288

Funding statement: The first author is currently supported by the National Natural Science Foundation of China (No. 11901287), the Natural Science Foundation of Jiangsu Province (No. BK20190288) and the Nanjing Science and Technology Innovation Project.

Acknowledgements

We would like to express our gratitude to A. Abbes, A. Beilinson, L. Fu, O. Gabber, F. Orgogozo, T. Saito and Y. Tian for inspiring discussions on this topic and valuable suggestions. We are indebted to T. Saito for providing a simplified argument in the proof of Theorem 4.3, as well as for suggesting Proposition 7.7, which gave birth to the last section of this paper. We thank the anonymous referee for careful reading and valuable comments. The first author would like to thank Y. Cao and T. Deng for helpful discussions on abelian varieties. This manuscript was mainly written while the first author was visiting the Max-Planck Institute for Mathematics in Bonn and while the second author was visiting the Catholic University in Leuven and received support from the long term structural funding-Methusalem grant of the Flemish Government. We would like to thank both Institutes for their hospitality and for providing outstanding working conditions.

References

[1] A. Abbes, Cycles on arithmetic surfaces, Compos. Math. 122 (2000), no. 1, 23–111. 10.1023/A:1001822419774Search in Google Scholar

[2] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II, Doc. Math. Extra Vol. (2003), 5–72. 10.1353/ajm.2002.0026Search in Google Scholar

[3] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (2002), no. 5, 879–920. 10.1353/ajm.2002.0026Search in Google Scholar

[4] Y. André, Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), no. 1, 147–198. 10.1007/s00222-007-0060-3Search in Google Scholar

[5] M. Artin, A. Grothendieck and J. -L Verdier, Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Math. 270, Springer, Berlin 1972. 10.1007/BFb0081551Search in Google Scholar

[6] M. Artin, A. Grothendieck and J. -L Verdier, Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Math. 305, Springer, Berlin 1973. 10.1007/BFb0070714Search in Google Scholar

[7] A. Beilinson, Constructible sheaves are holonomic, Selecta Math. (N. S.) 22 (2016), no. 4, 1797–1819. 10.1007/s00029-016-0260-zSearch in Google Scholar

[8] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves, Algebraic geometry, Proc. Sympos. Pure Math. 46, American Mathematical Society, Providence (1987), 421–450. 10.1090/pspum/046.2/927991Search in Google Scholar

[9] L. Fu, Etale cohomology theory, Nankai Tracts Math. 13, World Scientific, Hackensack 2011. 10.1142/7773Search in Google Scholar

[10] W. Fulton, Intersection theory, Springer, Berlin 1998. 10.1007/978-1-4612-1700-8Search in Google Scholar

[11] A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Math. 263, Springer, Berlin 1971. 10.1007/BFb0058656Search in Google Scholar

[12] A. Grothendieck, M. Raynaud and D. S. Rim, Groupes de monodromie en géométrie algébrique. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math. 288, Springer, Berlin 1972. Search in Google Scholar

[13] A. Grothendieck, M. Raynaud and D. S. Rim, Groupes de monodromie en géométrie algébrique. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Lecture Notes in Math. 340, Springer, Berlin 1973. Search in Google Scholar

[14] H. Hu, Logarithmic ramifications of étale sheaves by restricting to curves, Int. Math. Res. Not. IMRN 2019 (2019), no. 19, 5914–5952. 10.1093/imrn/rnx228Search in Google Scholar

[15] H. Hu and E. Yang, Semi-continuity for total dimension divisors of étale sheaves, Internat. J. Math. 28 (2017), no. 1, Article ID 1750001. 10.1142/S0129167X1750001XSearch in Google Scholar

[16] L. Illusie, Autour du théorème de monodromie locale, Périodes p-adiques, Astérisque 223, Société Mathématique de France, Paris (1994), Exposé No. 1. Search in Google Scholar

[17] L. Illusie, On semistable reduction and the calculation of nearby cycles, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin (2004), 785–803. 10.1515/9783110198133.2.785Search in Google Scholar

[18] L. Illusie, Grothendieck and vanishing cycles, preprint (2015). 10.5802/afst.1667Search in Google Scholar

[19] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Algebraic K-theory and algebraic number theory (Honolulu 1987), Contemp. Math. 83, American Mathematical Society, Providence (1989), 101–131. 10.1090/conm/083/991978Search in Google Scholar

[20] K. Kato and T. Saito, On the conductor formula of Bloch, Publ. Math. Inst. Hautes Études Sci. 100 (2004), 5–151. 10.1007/s10240-004-0026-6Search in Google Scholar

[21] K. Kato and T. Saito, Ramification theory for varieties over a local field, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 1–178. 10.1007/s10240-013-0048-zSearch in Google Scholar

[22] G. Laumon, Semi-continuité du conducteur de Swan (d’après P. Deligne), The Euler–Poincaré characteristic, Astérisque 83, Société Mathématique de France, Paris (1981), 173–219. Search in Google Scholar

[23] G. Laumon, Caractéristique d’Euler–Poincaré des faisceaux constructibles sur une surface, Analysis and topology on singular spaces. II, III (Luminy 1981), Astérisque 101, Société Mathématique de France, Paris (1983), 193–207. Search in Google Scholar

[24] I. Leal, On the ramification of étale cohomology groups, J. reine angew. Math. 749 (2019), 295–304. 10.1515/crelle-2016-0035Search in Google Scholar

[25] D. Mumford, Abelian varieties, Tata Inst. Fundamen. Res. Stud. Math. 5, Tata Institute of Fundamental Research, Bombay 1970. Search in Google Scholar

[26] F. Orgogozo, Modifications et cycles proches sur une base générale, Int. Math. Res. Not. IMRN 2006 (2006), Article ID 25315. 10.1155/IMRN/2006/25315Search in Google Scholar

[27] M. Rapoport and T. Zink, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68 (1982), no. 1, 21–101. 10.1007/BF01394268Search in Google Scholar

[28] T. Saito, Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), no. 6, 1043–1085. 10.2307/2374585Search in Google Scholar

[29] T. Saito, Wild ramification and the characteristic cycle of an l-adic sheaf, J. Inst. Math. Jussieu 8 (2009), no. 4, 769–829. 10.1017/S1474748008000364Search in Google Scholar

[30] T. Saito, Characteristic cycles and the conductor of direct image, preprint (2017), https://arxiv.org/abs/1704.04832v1. 10.1090/jams/959Search in Google Scholar

[31] T. Saito, The characteristic cycle and the singular support of a constructible sheaf, Invent. Math. 207 (2017), no. 2, 597–695. 10.1007/s00222-016-0675-3Search in Google Scholar

[32] T. Saito, Wild ramification and the cotangent bundle, J. Algebraic Geom. 26 (2017), no. 3, 399–473. 10.1090/jag/681Search in Google Scholar

[33] J.-P. Serre, Corps locaux, Hermann, Paris 1968. Search in Google Scholar

[34] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. 10.1007/978-3-642-37726-6_79Search in Google Scholar

[35] J.-B. Teyssier, Nearby slopes and boundedness for -adic sheaves in positive characteristic, preprint (2015). Search in Google Scholar

[36] J.-B. Teyssier, A boundedness theorem for nearby slopes of holonomic 𝒟-modules, Compos. Math. 152 (2016), no. 10, 2050–2070. 10.1112/S0010437X16007533Search in Google Scholar

[37] J.-B. Teyssier, Moduli of Stokes torsors and singularities of differential equations, preprint (2018), https://arxiv.org/abs/1802.00289; to appear in J. Eur. Math. Soc. (JEMS). Search in Google Scholar

[38] N. Tsuzuki, Constancy of Newton polygons of F-isocrystals on Abelian varieties and isotriviality of families of curves, preprint (2017), https://arxiv.org/pdf/1704.00856.pdf. 10.1017/S1474748019000276Search in Google Scholar

Received: 2019-07-26
Revised: 2021-01-22
Published Online: 2021-03-17
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2021-0009/html
Scroll to top button