Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of substance use disorders in the era of big data

Abstract

Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies — including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples — have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From epidemiology and gene discovery to biology of SUDs.
Fig. 2: Genetic correlation among SUD traits and other phenotypes.
Fig. 3: Twin-based versus SNP-based heritabilities of alcohol, cannabis, cocaine, opioid and tobacco addictions.

Similar content being viewed by others

References

  1. Volkow, N. D., Jones, E. B., Einstein, E. B. & Wargo, E. M. Prevention and treatment of opioid misuse and addiction: a review. JAMA Psychiatry 76, 208–216 (2019).

    Article  PubMed  Google Scholar 

  2. Rehm, J. et al. Alcohol use disorders in primary health care: what do we know and where do we go? Alcohol. Alcohol. 51, 422–7 (2016).

    Article  PubMed  Google Scholar 

  3. Kiluk, B. D., Fitzmaurice, G. M., Strain, E. C. & Weiss, R. D. What defines a clinically meaningful outcome in the treatment of substance use disorders: reductions in direct consequences of drug use or improvement in overall functioning? Addiction 114, 9–15 (2019).

    Article  PubMed  Google Scholar 

  4. Prescott, C. A., Khoddam, R. & Arpawong Genetic risk for substance abuse and addiction: family and twin studies. eLS https://doi.org/10.1002/9780470015902.a0005230.pub2 (2016).

    Article  Google Scholar 

  5. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019). This article provides a valuable discussion on the importance of genetic study of samples of non-European ancestry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Border, R. et al. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am. J. Psychiatry 176, 376–387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Johnson, E. C. et al. No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes. Biol. Psychiatry 82, 702–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saunders, J. B., Aasland, O. G., Babor, T. F., de la Fuente, J. R. & Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption — II. Addiction 88, 791–804 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders IV (American Psychiatric Association, 1994).

  11. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (American Psychiatric Association, 2013).

  12. Sanchez-Roige, S. et al. Genome-wide association study meta-analysis of the Alcohol Use Disorder Identification Test (AUDIT) in two population-based cohorts (N = 141,958). Am. J. Psychiatry 176, 107–118 (2019). This article is a key milestone in the identification of differences between alcohol use and dependence-related phenotypes.

    Article  PubMed  Google Scholar 

  13. Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020). This article is the largest AUD GWAS to date, with a deep dive into functional implications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kranzler, H. R. et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 10, 1499 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gelernter, J. et al. Genome-wide association study of maximum habitual alcohol intake in >140,000 U.S. European and African American veterans yields novel risk loci. Biol. Psychiatry 86, 365–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inda, C. et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J. Cell Biol. 214, 181–195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quillen, E. E. et al. ALDH2 is associated to alcohol dependence and is the major genetic determinant of “daily maximum drinks” in a GWAS study of an isolated rural Chinese sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 103–110 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Sun, Y. et al. Genome-wide association study of alcohol dependence in male Han Chinese and cross-ethnic polygenic risk score comparison. Transl. Psychiatry 9, 249 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gelernter, J. et al. Genomewide association study of alcohol dependence and related traits in a Thai population. Alcohol. Clin. Exp. Res. 42, 861–868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sherva, R. et al. Variation in nicotinic acetylcholine receptor genes is associated with multiple substance dependence phenotypes. Neuropsychopharmacology 35, 1921–1931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tobacco & Genetics, C. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

    Article  CAS  Google Scholar 

  23. Saccone, N. L. et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6, e1001053 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C. & Fagerstrom, K. O. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br. J. Addict. 86, 1119–1127 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Hancock, D. B. et al. Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence. Mol. Psychiatry 23, 1911–1919 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, J. et al. Genome-wide meta-analyses of FTND and TTFC phenotypes. Nicotine Tob. Res. 22, 900–909 (2020).

    Article  PubMed  Google Scholar 

  27. Quach, B. C. et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat. Commun. 11, 5562 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, K. et al. Genome-wide association study of a longitudinal phenotype of smoking and meta-analysis of smoking status in up to 842,000 individuals. Nat. Commun. 11, 5302 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hasin, D. S. et al. US adult illicit cannabis use, cannabis use disorder, and medical marijuana laws: 1991–1992 to 2012–2013. JAMA Psychiatry 74, 579–588 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hasin, D. S. US epidemiology of cannabis use and associated problems. Neuropsychopharmacology 43, 195–212 (2018).

    Article  PubMed  Google Scholar 

  31. Sherva, R. et al. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks. JAMA Psychiatry 73, 472–480 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Agrawal, A. et al. Genome-wide association study identifies a novel locus for cannabis dependence. Mol. Psychiatry 23, 1293–1302 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Stringer, S. et al. Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl. Psychiatry 6, e769 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pasman, J. A. et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat. Neurosci. 21, 1161–1170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minica, C. C. et al. Genome-wide association meta-analysis of age at first cannabis use. Addiction 113, 2073–2086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Demontis, D. et al. Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nat. Neurosci. 22, 1066–1074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gelernter, J. et al. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry 76, 66–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, E. C. et al. Evidence of CNIH3 involvement in opioid dependence. Mol. Psychiatry 21, 608–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, Z. et al. Genome-wide association study identifies a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol. Psychiatry 84, 762–770 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Polimanti, R. et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol. Psychiatry 25, 1673–1687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karlsson Linner, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 51, 245–257 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 50, 920–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, H. et al. Association of OPRM1 functional coding variant with opioid use disorder: a genome-wide association study. JAMA Psychiatry 77, 1072–1080 (2020). This OUD study, due to the relatively small sample size in the era of big data, identified only one significant association. However, it maps to the OPRM1 gene, the key pharmacologcal target for opioids.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smith, A. H. et al. Genome-wide association study of therapeutic opioid dosing identifies a novel locus upstream of OPRM1. Mol. Psychiatry 22, 346–352 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gelernter, J. et al. Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene. Mol. Psychiatry 19, 717–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Dickson, P. E. et al. Systems genetics of intravenous cocaine self-administration in the BXD recombinant inbred mouse panel. Psychopharmacology 233, 701–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Cabana-Dominguez, J., Shivalikanjli, A., Fernandez-Castillo, N. & Cormand, B. Genome-wide association meta-analysis of cocaine dependence: shared genetics with comorbid conditions. Prog. Neuropsychopharmacol. Biol. Psychiatry 94, 109667 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, J., Kranzler, H. R., Gelernter, J. & Bi, J. A genome-wide association study of cocaine use disorder accounting for phenotypic heterogeneity and gene-environment interaction. J. Psychiatry Neurosci. 45, 34–44 (2020).

    Article  PubMed  Google Scholar 

  50. Edenberg, H. J. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol. Res. Health 30, 5–13 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. Eng, M. Y., Luczak, S. E. & Wall, T. L. ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol. Res. Health 30, 22–27 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Luczak, S. E. et al. ALDH2 and ADH1B interactions in retrospective reports of low-dose reactions and initial sensitivity to alcohol in Asian American college students. Alcohol. Clin. Exp. Res. 35, 1238–1245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edenberg, H. J. & McClintick, J. N. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol. Clin. Exp. Res. 42, 2281–2297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Polimanti, R. & Gelernter, J. ADH1B: from alcoholism, natural selection, and cancer to the human phenome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Matejcic, M., Gunter, M. J. & Ferrari, P. Alcohol metabolism and oesophageal cancer: a systematic review of the evidence. Carcinogenesis 38, 859–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Brunzell, D. H., Stafford, A. M. & Dixon, C. I. Nicotinic receptor contributions to smoking: insights from human studies and animal models. Curr. Addict. Rep. 2, 33–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Albuquerque, E. X., Pereira, E. F., Alkondon, M. & Rogers, S. W. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Saccone, S. F. et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum. Mol. Genet. 16, 36–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lassi, G. et al. The CHRNA5–A3–B4 gene cluster and smoking: from discovery to therapeutics. Trends Neurosci. 39, 851–861 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bosse, Y. & Amos, C. I. A decade of GWAS results in lung cancer. Cancer Epidemiol. Biomark. Prev. 27, 363–379 (2018).

    Article  Google Scholar 

  61. Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir. Med. 3, 769–781 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dani, J. A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int. Rev. Neurobiol. 124, 3–19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Valentine, G. & Sofuoglu, M. Cognitive effects of nicotine: recent progress. Curr. Neuropharmacol. 16, 403–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Antolin-Fontes, B., Ables, J. L., Gorlich, A. & Ibanez-Tallon, I. The habenulo–interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology 96, 213–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Jensen, K. P. et al. A CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacology 40, 2813–2821 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanner, J. A. et al. Nicotine metabolite ratio (3-hydroxycotinine/cotinine) in plasma and urine by different analytical methods and laboratories: implications for clinical implementation. Cancer Epidemiol. Biomark. Prev. 24, 1239–1246 (2015).

    Article  CAS  Google Scholar 

  67. Loukola, A. et al. A genome-wide association study of a biomarker of nicotine metabolism. PLoS Genet. 11, e1005498 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tanner, J. A. et al. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet Genomics 27, 169–178 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, S. L. et al. Association of CYP2A6 activity with lung cancer incidence in smokers: the Multiethnic Cohort Study. PLoS ONE 12, e0178435 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tanner, J. A. & Tyndale, R. F. Variation in CYP2A6 activity and personalized medicine. J. Pers. Med. 7, 18 (2017).

    Article  PubMed Central  Google Scholar 

  71. Polimanti, R., Jensen, K. P. & Gelernter, J. Phenome-wide association study for CYP2A6 alleles: rs113288603 is associated with hearing loss symptoms in elderly smokers. Sci. Rep. 7, 1034 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Li, S., Yang, Y., Hoffmann, E., Tyndale, R. F. & Stein, E. A. CYP2A6 genetic variation alters striatal-cingulate circuits, network hubs, and executive processing in smokers. Biol. Psychiatry 81, 554–563 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017). This article presents an interesting hypothesis moving the genetics of complex traits from polygenic to omnigenic due to the interconnection of gene regulatory networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019). This article provides a birds-eye view of complex traits and pleiotropy considering numerous traits.

    Article  CAS  PubMed  Google Scholar 

  75. Weissbrod, O., Flint, J. & Rosset, S. Estimating SNP-based heritability and genetic correlation in case-control studies directly and with summary statistics. Am. J. Hum. Genet. 103, 89–99 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pasaniuc, B. & Price, A. L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 18, 117–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Soler Artigas, M. et al. Attention-deficit/hyperactivity disorder and lifetime cannabis use: genetic overlap and causality. Mol. Psychiatry 25, 2493–2503 (2019).

    Article  PubMed  Google Scholar 

  78. Few, L. R. et al. Genetic variation in personality traits explains genetic overlap between borderline personality features and substance use disorders. Addiction 109, 2118–2127 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lo, M. T. et al. Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nat. Genet. 49, 152–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Nievergelt, C. M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun. 10, 4558 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gelernter, J. et al. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 22, 1394–1401 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Polimanti, R. et al. Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium. Psychol. Med. 49, 1218–1226 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from approximately 200,000 participants in the million veteran program. Am. J. Psychiatry 177, 223–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Benowitz, N. L. Nicotine addiction. N. Engl. J. Med. 362, 2295–2303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018). This article is a review on the current state of the personal and clinical utility of polygenic risk profiling.

    Article  CAS  PubMed  Google Scholar 

  86. Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genetics 17, e1009021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chang, L. H. et al. Association between polygenic risk for tobacco or alcohol consumption and liability to licit and illicit substance use in young Australian adults. Drug Alcohol. Depend. 197, 271–279 (2019).

    Article  PubMed  Google Scholar 

  88. Johnson, E. C. et al. Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples. Psychol. Med. https://doi.org/10.1017/S0033291719004045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Johnson, E. C. et al. The genetic relationship between alcohol consumption and aspects of problem drinking in an ascertained sample. Alcohol. Clin. Exp. Res. 43, 1113–1125 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Chang, L. H. et al. Associations between polygenic risk for tobacco and alcohol use and liability to tobacco and alcohol use, and psychiatric disorders in an independent sample of 13,999 Australian adults. Drug Alcohol. Depend. 205, 107704 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Vink, J. M. et al. Polygenic risk scores for smoking: predictors for alcohol and cannabis use? Addiction 109, 1141–1151 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Johnson, E. C. et al. Exploring the relationship between polygenic risk for cannabis use, peer cannabis use and the longitudinal course of cannabis involvement. Addiction 114, 687–697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Polimanti, R., Agrawal, A. & Gelernter, J. Schizophrenia and substance use comorbidity: a genome-wide perspective. Genome Med. 9, 25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hartz, S. M. et al. Association between substance use disorder and polygenic liability to schizophrenia. Biol. Psychiatry 82, 709–715 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang, S. H. et al. Association between polygenic liability for schizophrenia and substance involvement: a nationwide population-based study in Taiwan. Genes. Brain Behav. 19, e12639 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Pasman, J. A., Verweij, K. J. H. & Vink, J. M. Systematic review of polygenic gene–environment interaction in tobacco, alcohol, and cannabis use. Behav. Genet. 49, 349–365 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hatoum, A. S. et al. Genetic data can lead to medical discrimination: cautionary tale of opioid use disorder. Preprint at medRxiv https://doi.org/10.1101/2020.09.12.20193342 (2020). This article considers rigorously the perils of trying to use polygenic prediction of phenotypes without accounting for ancestry differences. Unfortunately, this is an important issue in today’s marketplace.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 27, R195–R208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dimou, N. L. & Tsilidis, K. K. A primer in mendelian randomization methodology with a focus on utilizing published summary association data. Methods Mol. Biol. 1793, 211–230 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Brand, J. S. et al. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with longitudinal fetal growth: findings from Mendelian randomization and parental negative control studies. PLoS Med. 16, e1002972 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ostergaard, S. D. et al. Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study. PLoS Med. 12, e1001841 (2015); discussion e1001841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pedersen, K. M. et al. Smoking and increased white and red blood cells. Arterioscler. Thromb. Vasc. Biol. 39, 965–977 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Bjorngaard, J. H. et al. Heavier smoking increases coffee consumption: findings from a Mendelian randomization analysis. Int. J. Epidemiol. 46, 1958–1967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Johnsen, M. B. et al. The causal role of smoking on the risk of headache. A Mendelian randomization analysis in the HUNT study. Eur. J. Neurol. 25, 1148-e102 (2018).

    Article  PubMed  Google Scholar 

  105. Caramaschi, D. et al. Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study. Transl. Psychiatry 8, 262 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Taylor, M. et al. Is smoking heaviness causally associated with alcohol use? A Mendelian randomization study in four European cohorts. Int. J. Epidemiol. 47, 1098–1105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Taylor, A. E. et al. Investigating the possible causal association of smoking with depression and anxiety using Mendelian randomisation meta-analysis: the CARTA consortium. BMJ Open 4, e006141 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Guo, R., Wu, L. & Fu, Q. Is there causal relationship of smoking and alcohol consumption with bone mineral density? A Mendelian randomization study. Calcif. Tissue Int. 103, 546–553 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sanderson, E., Davey Smith, G., Bowden, J. & Munafo, M. R. Mendelian randomisation analysis of the effect of educational attainment and cognitive ability on smoking behaviour. Nat. Commun. 10, 2949 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sallis, H. M., Davey Smith, G. & Munafo, M. R. Cigarette smoking and personality: interrogating causality using Mendelian randomisation. Psychol. Med. 49, 2197–2205 (2019).

    Article  PubMed  Google Scholar 

  112. Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med. 50, 2435–2443 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gage, S. H. et al. Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. Sci. Rep. 7, 40653 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vermeulen, J. M. et al. Smoking and the risk for bipolar disorder: evidence from a bidirectional Mendelian randomisation study. Br. J. Psychiatry 218, 88–94 (2021).

    Article  PubMed  Google Scholar 

  115. Larsson, S. C., Burgess, S. & Michaelsson, K. Smoking and stroke: a Mendelian randomization study. Ann. Neurol. 86, 468–471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yuan, S., Michaelsson, K., Wan, Z. & Larsson, S. C. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif. Tissue Int. 105, 582–588 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Carreras-Torres, R. et al. Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 361, k1767 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gage, S. H. et al. Assessing causality in associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization study. Psychol. Med. 47, 971–980 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Vaucher, J. et al. Cannabis use and risk of schizophrenia: a Mendelian randomization study. Mol. Psychiatry 23, 1287–1292 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Treur, J. L. et al. Investigating causality between liability to ADHD and substance use, and liability to substance use and ADHD risk, using Mendelian randomization. Addict. Biol. 26, e1284 (2021).

    Article  Google Scholar 

  121. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30–42 (2017).

    Article  PubMed  Google Scholar 

  123. Farabee, D., Schulte, M., Gonzales, R. & Grella, C. E. Technological aids for improving longitudinal research on substance use disorders. BMC Health Serv. Res. 16, 370 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kanherkar, R. R., Bhatia-Dey, N. & Csoka, A. B. Epigenetics across the human lifespan. Front. Cell Dev. Biol. 2, 49 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ruggeri, B. et al. Methylation of OPRL1 mediates the effect of psychosocial stress on binge drinking in adolescents. J. Child. Psychol. Psychiatry 59, 650–658 (2018).

    Article  PubMed  Google Scholar 

  127. Muschler, M. et al. Epigenetic alterations of the POMC promoter in tobacco dependence. Eur. Neuropsychopharmacol. 28, 875–879 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Ebrahimi, G. et al. Elevated levels of DNA methylation at the OPRM1 promoter region in men with opioid use disorder. Am. J. Drug Alcohol. Abus. 44, 193–199 (2018).

    Article  Google Scholar 

  129. Kaur, G., Begum, R., Thota, S. & Batra, S. A systematic review of smoking-related epigenetic alterations. Arch. Toxicol. 93, 2715–2740 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bojesen, S. E., Timpson, N., Relton, C., Davey Smith, G. & Nordestgaard, B. G. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax 72, 646–653 (2017).

    Article  PubMed  Google Scholar 

  132. Bollepalli, S., Korhonen, T., Kaprio, J., Anders, S. & Ollikainen, M. EpiSmokEr: a robust classifier to determine smoking status from DNA methylation data. Epigenomics 11, 1469–1486 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Gupta, R. et al. Epigenome-wide association study of serum cotinine in current smokers reveals novel genetically driven loci. Clin. Epigenet. 11, 1 (2019).

    Article  CAS  Google Scholar 

  134. Fragou, D., Pakkidi, E., Aschner, M., Samanidou, V. & Kovatsi, L. Smoking and DNA methylation: correlation of methylation with smoking behavior and association with diseases and fetus development following prenatal exposure. Food Chem. Toxicol. 129, 312–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Baglietto, L. et al. DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk. Int. J. Cancer 140, 50–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, K. et al. Epigenome-wide DNA methylation association analysis identified novel loci in peripheral cells for alcohol consumption among European American male veterans. Alcohol. Clin. Exp. Res. 43, 2111–2121 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, C. et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 23, 422–433 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Dugue, P. A. et al. Alcohol consumption is associated with widespread changes in blood DNA methylation: analysis of cross-sectional and longitudinal data. Addict. Biol. 26, e12855 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, H. & Gelernter, J. Review: DNA methylation and alcohol use disorders: progress and challenges. Am. J. Addict. 26, 502–515 (2017).

    Article  PubMed  Google Scholar 

  140. Hagerty, S. L., Bidwell, L. C., Harlaar, N. & Hutchison, K. E. An exploratory association study of alcohol use disorder and DNA methylation. Alcohol. Clin. Exp. Res. 40, 1633–1640 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lohoff, F. W. et al. Methylomic profiling and replication implicates deregulation of PCSK9 in alcohol use disorder. Mol. Psychiatry 23, 1900–1910 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Tay, N. et al. Allele-specific methylation of SPDEF: a novel moderator of psychosocial stress and substance abuse. Am. J. Psychiatry 176, 146–155 (2019).

    Article  PubMed  Google Scholar 

  143. Heilig, M. et al. Reprogramming of mPFC transcriptome and function in alcohol dependence. Genes Brain Behav. 16, 86–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Witt, S. H. et al. Acute alcohol withdrawal and recovery in men lead to profound changes in DNA methylation profiles: a longitudinal clinical study. Addiction 115, 2034–2044 (2020).

    Article  PubMed  Google Scholar 

  145. Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin. Epigenet. 11, 62 (2019).

    Article  Google Scholar 

  146. Rosen, A. D. et al. DNA methylation age is accelerated in alcohol dependence. Transl. Psychiatry 8, 182 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Montalvo-Ortiz, J. L., Cheng, Z., Kranzler, H. R., Zhang, H. & Gelernter, J. Genomewide study of epigenetic biomarkers of opioid dependence in European-American women. Sci. Rep. 9, 4660 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Osborne, A. J. et al. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl. Psychiatry 10, 114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bazov, I. et al. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Transl. Psychiatry 8, 122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359, 693–697 (2018). This comparison of gene expression patterns in psychiatric disorders demonstrates shared and specific disease mechanisms based on transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mamdani, M. et al. Integrating mRNA and miRNA weighted gene co-expression networks with eQTLs in the nucleus accumbens of subjects with alcohol dependence. PLoS ONE 10, e0137671 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lieberman, R., Kranzler, H. R., Levine, E. S. & Covault, J. Examining the effects of alcohol on GABAA receptor mRNA expression and function in neural cultures generated from control and alcohol dependent donor induced pluripotent stem cells. Alcohol 66, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Jensen, K. P. et al. Alcohol-responsive genes identified in human iPSC-derived neural cultures. Transl. Psychiatry 9, 96 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mandal, C. et al. Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol. Vitr. 46, 66–76 (2018).

    Article  CAS  Google Scholar 

  155. Fernandez-Castillo, N. et al. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence. Transl. Psychiatry 5, e667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cabana-Dominguez, J., Arenas, C., Cormand, B. & Fernandez-Castillo, N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl. Psychiatry 8, 173 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Guennewig, B. et al. THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl. Psychiatry 8, 89 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Vink, J. M. et al. Differential gene expression patterns between smokers and non-smokers: cause or consequence? Addict. Biol. 22, 550–560 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Tsai, P. C. et al. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin. Epigenet. 10, 126 (2018).

    Article  CAS  Google Scholar 

  160. Salihu, H. M. et al. Evidence of altered brain regulatory gene expression in tobacco-exposed fetuses. J. Perinat. Med. 45, 1045–1053 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Yen, E. et al. Sex-dependent gene expression in infants with neonatal opioid withdrawal syndrome. J. Pediatr. 214, 60–65.e2 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. He, Y. et al. Liprin α2 gene expression is increased by cannabis use and associated with neuropsychological function. Eur. Neuropsychopharmacol. 29, 643–652 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Fries, G. R. et al. Anhedonia in cocaine use disorder is associated with inflammatory gene expression. PLoS ONE 13, e0207231 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Salvatore, J. E. et al. Beyond genome-wide significance: integrative approaches to the interpretation and extension of GWAS findings for alcohol use disorder. Addict. Biol. 24, 275–289 (2019).

    Article  PubMed  Google Scholar 

  168. Marees, A. T. et al. Post-GWAS analysis of six substance use traits improves the identification and functional interpretation of genetic risk loci. Drug Alcohol. Depend. 206, 107703 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Thompson, A. et al. Functional validity, role, and implications of heavy alcohol consumption genetic loci. Sci. Adv. 6, eaay5034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cates, H. M. et al. National Institute on Drug Abuse genomics consortium white paper: coordinating efforts between human and animal addiction studies. Genes. Brain Behav. 18, e12577 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Spanagel, R. Animal models of addiction. Dialogues Clin. Neurosci. 19, 247–258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Volkow, N. D. & Koob, G. Brain disease model of addiction: why is it so controversial? Lancet Psychiatry 2, 677–679 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. National Institute of Mental Health. NOT-MH-19-053: notice of NIMH’s considerations regarding the use of animal neurobehavioral approaches in basic and pre-clinical studies. NIH https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-053.html (2019).

  174. Gordon, J. A. A Hypothesis-Based Approach: The Use of Animals in Mental Health Research https://www.nimh.nih.gov/about/director/messages/2019/a-hypothesis-based-approach-the-use-of-animals-in-mental-health-research.shtml (2019).

  175. Volkow, N. D., Koob, G. F. & McLellan, A. T. Neurobiologic advances from the brain disease model of addiction. N. Engl. J. Med. 374, 363–371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Volkow, N. D. & Boyle, M. Neuroscience of addiction: relevance to prevention and treatment. Am. J. Psychiatry 175, 729–740 (2018).

    Article  PubMed  Google Scholar 

  177. Uhl, G. R., Koob, G. F. & Cable, J. The neurobiology of addiction. Ann. N. Y. Acad. Sci. 1451, 5–28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. National Advisory Mental Health Council Workgroup on Genomics. Report of the National Advisory Mental Health Council Workgroup on Genomics: Opportunities and Challenges of Psychiatric Genetics https://www.nimh.nih.gov/about/advisory-boards-and-groups/namhc/reports/report-of-the-national-advisory-mental-health-council-workgroup-on-genomics.shtml#recommendations (2019).

  179. Wendt, F. R. et al. Characterizing the effect of background selection on the polygenicity of brain-related traits. Genomics 113, 111–119 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Xue, A. et al. Genome-wide analyses of behavioural traits are subject to bias by misreports and longitudinal changes. Nat. Commun. 12, 20211 (2021). We are becoming accustomed to using biobank data with self-report data rather than purpose-ascertained samples, to increase power — this article examines a major tradeoff.

    Article  CAS  PubMed  Google Scholar 

  182. Young, A. I. Solving the missing heritability problem. PLoS Genet. 15, e1008222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wainschtein, P. et al. Recovery of trait heritability from whole genome sequence data. Preprint at bioRxiv https://doi.org/10.1101/588020 (2019). ‘Missing heritability’, or the difference in heritability estimated from studies in genetic epidemiology (such as twin studies) and ‘chip heritability’, or heritability estimated from GWAS studies, is an issue that has dogged complex trait genetics. This article locates missing heritability for height and body mass index in whole-genome sequence data, from, for example, rare variation that can’t be imputed from array data.

    Article  Google Scholar 

  184. Wessel, J. et al. Rare non-coding variation identified by large scale whole genome sequencing reveals unexplained heritability of type 2 diabetes. Preprint at medRxiv https://doi.org/10.1101/2020.11.13.20221812 (2020).

    Article  Google Scholar 

  185. Goldman, D., Oroszi, G. & Ducci, F. The genetics of addictions: uncovering the genes. Nat. Rev. Genet. 6, 521–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Goldstein, A. & Kalant, H. Drug policy: striking the right balance. Science 249, 1513–1521 (1990).

    Article  CAS  PubMed  Google Scholar 

  187. Ganna, A. et al. Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior. Science 365, eaat7693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. World Health Organization. ICD-10: international statistical classification of diseases and related health problems: tenth revision (World Health Organization, Geneva, 2005).

  189. Check Hayden, E. The rise and fall and rise again of 23andMe. Nature 550, 174–177 (2017).

    Article  PubMed  Google Scholar 

  190. Hirata, M. et al. Overview of BioBank Japan follow-up data in 32 diseases. J. Epidemiol. 27, S22–S28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen, Z. et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40, 1652–1666 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Hjorleifsson, S. & Schei, E. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics. Eur. J. Hum. Genet. 14, 802–808 (2006).

    Article  PubMed  Google Scholar 

  193. Locke, A. E. et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 572, 323–328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  196. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the National Institutes of Health (NIH) (R01DA012690, R01AA026364, U01MH109532, P50AA012870, R01DA037974, R21DA047527 and R21DC018098) and the Department of Veterans Affairs (1I01CX001849). The authors thank D. Levey, Y. Nunez, C. Tyrrell and F. Wendt for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Joel Gelernter.

Ethics declarations

Competing interests

J.G. and R.P. are paid for their editorial work for Complex Psychiatry journal. J.G. is named as an inventor on PCT patent application #15/878,640 entitled ‘Genotype-guided dosing of opioid agonists’, filed 24 January 2018.

Additional information

Peer review information

Nature Reviews Genetics thanks D. Dick, D. Goldman, A. McIntosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Addictive substances

Psychoactive substances affecting mental processes and causing brain changes associated with the development of physiological dependence.

Substance use

The use of drugs or alcohol, including extrinsic substances such as cigarettes, cannabis, illegal drugs, prescription drugs, inhalants and solvents.

Substance use disorders

(SUDs). According to the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) definition, this diagnostic category combines substance abuse and substance dependence into a single disorder measured on a continuum from mild to severe.

Substance dependence

Mental illness characterized by behavioural, cognitive and physiological symptoms developed after repeated substance use that make it difficult to discontinue use, often despite harmful effects. These symptoms, which extend beyond purely psychological effects, are commonly known as physiological dependence or physical dependence.

Substance abuse

The harmful or hazardous use of psychoactive substances, including alcohol and licit and illicit drugs.

Candidate genes

Loci hypothesized to be associated with a complex traits on the basis of prevailing theories and positional mapping from linkage studies and/or cytogenetic studies.

Diagnostic criteria

Criteria reflecting signs, symptoms and tests that are useful to guide the care of patients and understand prognosis.

Pharmacogenomic

The study of how genomic variation affects individual responses to drugs and drug metabolism.

Epigenetic clock algorithms

Age predictors based on DNA methylation.

Addiction

Exhibiting a psychiatric condition manifested by compulsive substance use despite its harmful consequences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelernter, J., Polimanti, R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 22, 712–729 (2021). https://doi.org/10.1038/s41576-021-00377-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00377-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing