Skip to main content
Log in

A rosette like carbon structure controlled through ammoniation for superior adsorption of cationic brilliant green dye

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This paper investigates the influence of the structure, composition, pore size distribution and morphology of three carbon materials obtained from the explosion of acetylene gas on the adsorption performance of brilliant green (BG) dye. During the process, Rosette like carbon (RLC) is obtained in the detonation reaction gas with small amount of ammonia. It shows excellent adsorption properties and high reusability. The adsorption capacity is more than twice of C-nN and C-pN at the concentration of BG of 100 mg/L, the maximum monolayer adsorption capacity of 357.32 mg/g, elimination efficiency can reach 88.5% after 10 cycles of adsorbing BG, which is the best adsorption performance among the currently reported carbon materials. The adsorption equilibrium accords with Langmuir isotherm model and falls into single molecular layer absorption. The temperature and pH value selected have little effect on its adsorption capacity. The excellent properties of RLC contribute to an ideal substitute to the existing adsorbents of carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X. Feng et al., New structural carbons via industrial gas explosion for hybrid cathodes in Li–S batteries. Sustain. Chem. Eng. 7, 12948–12954 (2019)

    Article  CAS  Google Scholar 

  2. H. Tavallali, M. Ostovar, Trace spectrophotometric determination of brilliant green in fish farming water samples. Int. J. Chemtech Res. 1, 199–203 (2009)

    CAS  Google Scholar 

  3. D. Ziolkowska et al., Adsorption of cationic and anionic dyes onto commercial kaolin. Adsorpt. Sci. Technol. 27(2), 205–214 (2009)

    Article  CAS  Google Scholar 

  4. S. Seshadri, P.L. Bishop, A.M. Agha, Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manag. 14, 127–137 (1994)

    Article  CAS  Google Scholar 

  5. G. McKay, M. Otterburn, J. Aga, Fuller’s earth and fired clay as adsorbents for dye-stuffs. Water Air Soil Pollut. 24, 307–322 (1985)

    Article  CAS  Google Scholar 

  6. A.R. Gregory, J. Elliott, P. Kluge, Ames testing of direct black 38 parallels carcinogenicity testing. J. Appl. Toxicol 1, 308–313 (1981)

    Article  CAS  Google Scholar 

  7. K.G. Bhattacharyya, A. Sarma, Adsorption characteristics of the dye, brilliant green, on neem leaf powder. Dyes Pigments 57, 211–222 (2003)

    Article  CAS  Google Scholar 

  8. M.G. Mohamed et al., Multifunctional hypercrosslinked porous organic polymers based on tetraphenylethene and triphenylamine derivatives for high-performance dye adsorption and supercapacitor. Polymers 12(10), 2426 (2020). ((1–17))

    Article  CAS  Google Scholar 

  9. K.I. Aly et al., A facile synthetic route and dual function of network luminescent porous polyester and copolyester containing porphyrin moiety for metal ions sensor and dyes adsorption. Microporous Mesoporous Mater. 298, 110063 (2020). ((1–11))

    Article  Google Scholar 

  10. N. Zeinali, M. Ghaedi, G. Shafie, Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination. J. Ind. Eng. Chem. 20(5), 3550–3558 (2014)

    Article  CAS  Google Scholar 

  11. A. Molla et al., Selective adsorption of organic dyes on graphene oxide: theoretical and experimental analysis. Appl. Surf. Sci. 464, 170–177 (2019)

    Article  CAS  Google Scholar 

  12. M. Wu et al., Carbon counter electrodes in dye-sensitized and perovskite solar cells. Adv. Funct. Mater. 30(7), 1906451 (2020). ((1–34))

    Article  CAS  Google Scholar 

  13. R.R.I. Neto, R.J.S.M. Raj, The flash effect in electronic conductors: the case of amorphous carbon fibers. Scripta Mater. 179, 20–24 (2020)

    Article  Google Scholar 

  14. W. Zhang, S.R.P. Silva, Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Mater. 63(6), 645–648 (2010)

    Article  CAS  Google Scholar 

  15. M. Vasuki, S. Punitha, M. Karthika, A comparative study of adsorption of acid blue 9 and brilliant green from aqueous solution by activated carbon derived from coconut shell and palmyra fruit nut shell. J. Adv. Appl. Sci. Res. 1(7), 1–5 (2017)

    Google Scholar 

  16. V. Rawat et al., Oplismenus frumentaceus (Jhangora) husk for activated carbon preparation and its use in adsorption of Brilliant Green dye from aqueous solution. J. Indian Chem. Soc. 90(8), 1223–1231 (2013)

    CAS  Google Scholar 

  17. A. Jaiswal, M.C. Chattopadhyaya, Studies of kinetics and isotherm effect on Brilliant Green dye with activated carbon. J. Indian Chem. Soc. 86(12), 1315–1319 (2009)

    CAS  Google Scholar 

  18. M. Ghaedi et al., Solid phase extraction and removal of brilliant green dye on zinc oxide nanoparticles loaded on activated carbon: new kinetic model and thermodynamic evaluation. J. Ind. Eng. Chem. 20(4), 1444–1452 (2014)

    Article  CAS  Google Scholar 

  19. M. Asadullah et al., Chemical and structural evaluation of activated carbon prepared from jute sticks for Brilliant Green dye removal from aqueous solution. J. Hazard. Mater. 174(1–3), 437–443 (2010)

    Article  CAS  Google Scholar 

  20. M.S. Ur Rehman et al., Adsorption of brilliant green dye on biochar prepared from lignocellulosic bioethanol plant waste. Clean: Soil, Air, Water 44(1), 55–62 (2016)

    Google Scholar 

  21. M.P. Tavlieva et al., Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. J. Colloid Interface Sci. 409, 112–122 (2013)

    Article  CAS  Google Scholar 

  22. R.L. Liu et al., Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Biores. Technol. 154, 138–147 (2014)

    Article  CAS  Google Scholar 

  23. R. Kumar, M.O. Ansari, M.A. Barakat, Adsorption of brilliant green by surfactant doped polyaniline/MWCNTs composite: evaluation of the kinetic, thermodynamic, and isotherm. Ind. Eng. Chem. Res. 53(17), 7167–7175 (2014)

    Article  CAS  Google Scholar 

  24. N. Kataria, V.K. Garg, Application of EDTA modified Fe3O4/sawdust carbon nanocomposites to ameliorate methylene blue and brilliant green dye laden water. Environ. Res. 172, 43–54 (2019)

    Article  CAS  Google Scholar 

  25. H.I. Chieng, N. Priyantha, L.B.L. Lim, Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: isotherms, thermodynamics, kinetics and regeneration studies. RSC Adv. 5(44), 34603–34615 (2015)

    Article  CAS  Google Scholar 

  26. H.C. Chen et al., Nitrogen doping effects on the physical and chemical properties of mesoporous carbons. J. Phys. Chem. C 117(16), 8318–8328 (2013)

    Article  CAS  Google Scholar 

  27. M. Naushad et al., Adsorption of textile dye using para-aminobenzoic acid modified activated carbon: Kinetic and equilibrium studies. J. Mol. Liq. 296, 112075 (2019). ((1–7))

    Article  CAS  Google Scholar 

  28. I. Anastopoulos et al., Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J. Environ. Manag. 261, 110236 (2020). ((1–9))

    Article  CAS  Google Scholar 

  29. V.S. Mane, I.D. Mall, V.C. Srivastava, Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments 73(3), 269–278 (2007)

    Article  CAS  Google Scholar 

  30. J.T. Li et al., A wormhole-structured mesoporous carbon with superior adsorption for dyes. Carbon 49(6), 1912–1918 (2011)

    Article  CAS  Google Scholar 

  31. K.R. Hall et al., Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 5(2), 212–223 (1966)

    Article  CAS  Google Scholar 

  32. V.S. Mane, I.D. Mall, V.C. Srivastava, Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. J. Environ. Manag. 84(4), 390–400 (2007)

    Article  CAS  Google Scholar 

  33. G. Neha, K.K. Atul, M.C. Chattopadhyaya, Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 43(4), 604–613 (2012)

    Article  Google Scholar 

  34. R. Kumar, M.A. Barakat, Decolourization of hazardous brilliant green from aqueous solution using binary oxidized cactus fruit peel. Chem. Eng. J. 226, 377–383 (2013)

    Article  CAS  Google Scholar 

  35. M. Ghaedi et al., A novel acorn based adsorbent for the removal of brilliant green. Desalination 281(17), 226–233 (2011)

    Article  CAS  Google Scholar 

  36. B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 161(1), 387–395 (2009)

    Article  CAS  Google Scholar 

  37. V.S. Mane, P.V.V. Babu, Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 273(2–3), 321–329 (2011)

    Article  CAS  Google Scholar 

  38. M. Bagtash, J. Zolgharnein, Removal of brilliant green and malachite green from aqueous solution by a viable magnetic polymeric nanocomposite: Simultaneous spectrophotometric determination of 2 dyes by PLS using original and first derivative spectra. J. Chemom. 32(7), 1–9 (2018)

    Article  Google Scholar 

  39. M.S.U. Rehman et al., Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 228, 54–62 (2013)

    Article  CAS  Google Scholar 

  40. A. Mittal, D. Kaur, J. Mittal, Applicability of waste materials-bottom ash and deoiled soya-as adsorbents for the removal and recovery of a hazardous dye, brilliant green. J. Colloid Interface Sci. 326(1), 8–17 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant no. 51802322, the S&T Innovation 2025 Major Special Programme of Ningbo (2018B10054), K. C. Wong Education Foundation (Grant # GJTD-2019-13), Chinese Academy of Sciences Key Project (ZDRW-CN-2019-3) and the Natural Science Foundation of Shaanxi Province no. 2020JQ-857.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Feng or Hua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Feng, X., Li, R. et al. A rosette like carbon structure controlled through ammoniation for superior adsorption of cationic brilliant green dye. J Porous Mater 28, 1129–1136 (2021). https://doi.org/10.1007/s10934-021-01067-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01067-3

Keywords

Navigation