Skip to main content
Log in

Conversion of Existing AFLP Markers to SCAR Markers Linked to Globodera rostochiensis and Phytophthora infestans Resistance Could Be Performed Without Using Acrylamide Gel Electrophoresis

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

Marker-assisted selection (MAS) is more efficient with single locus marker methods than with the complex multi-locus AFLPTM system. Therefore, a method is described to convert AFLP markers into sequence characterised amplified region (SCAR) markers using arbitrary short primers that were generated based on AFLP markers linked to potato disease resistance genes. In the first step of this method, we synthesised short primers with nucleotides (A, T, G, or C) added to the 3′-ends based on primer sequences of AFLP markers. In the next step, polymerase chain reaction (PCR) analyses were performed with bulked segregant analysis (BSA) by combining the synthesised arbitrary primers with 10-base primers. In the final step, DNA fragments that were associated with disease resistance genes were detected using BSA and were converted into SCAR markers. Using this method, AFLP markers linked respectively to Globodera rostochiensis resistance gene H1 and Phytophthora infestans resistance gene R2 were easily converted to SCAR markers without using AFLP system. The detected SCAR markers were clear and reproducible. Thus, in MAS using SCAR markers, conversion of AFLP markers to SCAR markers using an arbitrary short primer could be an effective breeding tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  • Armstrong MR, Vossen J, Lim TY, Hutten RCB, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM (2019) Tracking disease resistance deployment in potato breeding by enrichment sequencing. Plant Biotechnol J 17:540–549

    Article  PubMed  CAS  Google Scholar 

  • Asano K, Kobayashi A, Tsuda S, Nishinaka M, Tamiya S (2012) DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan. Breed Sci 62:142–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bakker E, Achenbach U, Bakker J, van Vliet J, Peleman J, Segers B, van der Heijden S, van der Linde P, Graveland R, Hutten R, van Eck H, Coppoolse E, van der Vossen E, Bakker J, Goverse A (2004) A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theor Appl Genet 109:146–152

    Article  PubMed  CAS  Google Scholar 

  • Black W, Mastenbroek C, Mills WR, Peterson LC (1953) A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica 2:173–179

    Article  Google Scholar 

  • Bradshaw JE, Ramsay G (2005) Utilisation of the Commonwealth Potato Collection in potato breeding. Euphytica 146:9–19

    Article  Google Scholar 

  • Bradshaw JE, Bryan GJ, Lees AK, McLean K, Solomon-Blackburn RM (2006) Mapping the R10 and R11 genes for resistance to late blight ( Phytophthora infestans ) present in the potato ( Solanum tuberosum ) R-gene differentials of Black. Theor Appl Genet 112:744–751

    Article  PubMed  CAS  Google Scholar 

  • Brugmans B, van der Hulst RG, Visser RG, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31:e55

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaya M, Komura K (2005) Varietal differences to metalaxyl-resistant isolate of Phytophthora infestans in potato. 1. Test for resistance of potato compound leaves. Kyushu Agri Res 67:23

  • El-Kharbotly A, Palomino-Sánchez C, Salamini F, Jacobsen E, Gebhardt C (1996) R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 92:80–884

    Article  Google Scholar 

  • Gebhardt C, Mugniery D, Ritter E, Salamini F, Bonnel E (1993) Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theor Appl Genet 85:541–544

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H, Lehmann W, Schwarzfischer J, Valkonen JP (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

  • Hermsen JGT, Verdenius J (1973) Selection from Solanum tuberosum group phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot. Euphytica 22:244–259

    Article  Google Scholar 

  • Huang S, Vleeshouwers VG, Werij JS, Hutten RC, van Eck HJ, Visser RG, Jacobsen E (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant-Microbe Interact 17:428–435

    Article  PubMed  CAS  Google Scholar 

  • Iketani S, Ohnami M, Iritani M, Itoh T (2001) Progeny test of potato blight disease resistant combination. Rep Hokkaido Branch, Jap Soc Breed Hokkaido Branch. Crop Sci Soc Jap 42:87–89

    Google Scholar 

  • Iketani S, FuJita R, Iritani M, Itoh T, Murakami N, Matsubaga M, Senda K, Seiguti K, Ohnami M, Tsutiya T, Kanehira O (2011) A new potato variety “Yukitsubura”. Bull Hokkaido Res Organ Agri Exp Sta 17:25–34

    Google Scholar 

  • Iketani S, Senda K, Iritani M, Itoh T, Sekiguchi K, Ohnami M, Fujita R (2015) Breeding of a new table potato variety “Saya-akane” with high resistance to Phytophthora infestans and high quality. Breed Res 17:25–34

    Article  Google Scholar 

  • Inagaki H (1984) Studies on the ecology and control of the potato cyst nematode, Globodera rostochiensis. Res Bull Hokkaido Nat Agri Exp Sta 139:73–144

    Google Scholar 

  • Irikura Y (1975) Cytogenetic studies on haploid plants of tuber-bearing Solanum species. 1. Induction of haploid plants of tuber-bearing Solanums. Res Bull Hokkaido Nat Agri Exp Sta 112:1–74

    Google Scholar 

  • Kort J, Ross H, Rumpenhorst HJ, Stone AR (1977) An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematology 23:333–339

  • Leonards-Schippers C, Gieffers W, Salamini F, Gebhardt C (1992) The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Mol Gen Genet 233:278–283

    Article  PubMed  CAS  Google Scholar 

  • Li X, van Eck HJ, van der Voort JNAMR, Huigen DJ, Stam P, Jacobsen E (1998) Autotetraploids and genetic mapping using common AFLP markers: the R2 allele conferring resistance to Phytophthora infestans mapped on potato chromosome 4. Theor Appl Genet 96:1121–1128

    Article  CAS  Google Scholar 

  • Malcolmson JF, Black W (1966) New R genes in Solanum demissum Lindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15:199–203

  • Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Gen Genomics 265:207–214

    Article  CAS  Google Scholar 

  • Meredith DM, Hermann S, Jackson PA, Aitken KS (2011) Conversion of AFLP markers to high-throughput markers in a complex polyploid, sugarcane. Mol Breed 27:395–407

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miyazaki T, Ishibashi Y, Nakao T, Mukouzima M (2001) 1998 Paper Test Certificate. In: Training line productivity test preliminary test. Nagasaki Pref Comp Agri & Fore Exp Sta Aino Onishida Branch, Aino, p 19

  • Mukoujima N, Mori K, Sakamoto Y, Tamiya S, Sohbaru N, Ishibashi Y, Nakao T (2012) A new potato variety “Sanjumaru”. Bull Nagasaki Agri Fore Technol Dev Cent 3:27–51

  • Nakao T (2003) Potato breeding for region after golden nematode occurrence. Rep Kyushu Branch Crop Sci Soc Jap 69:80–83

    Google Scholar 

  • Nakao T (2010) Related organizations. In:Nagasaki Prefecture Agricultural and Forestry Technology Development, Tokusannsyubyou Vol.7. Jap Spec Comm Agri Prod Seed Seed Asso, Tokyo, pp 45–47

  • Nakao T, Mukouzima N, Ishibashi Y, Mori K (2002) Efficiency of potato breeding used by test for resistance to Golden nematode on early generations. Kyushu Agri Res 64:45

    Google Scholar 

  • Nuroniah HS, Gailing O, Finkeldey R (2010) Development of SCAR markers for species identification in the genus Shorea (Dipterocarpaceae). Silvae Genetica 59:249–257

    Article  Google Scholar 

  • Ohbayashi K (2019) The Rx gene derived USDA 41956 and Rx1 gene derived CPC 1673 confer equal resistance to the migration of Potato virus X from potato leaves to tubers. Euphytica 215:90

    Article  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  PubMed  CAS  Google Scholar 

  • Paris M, Meyer CL, Blassiau C, Coissac E, Taberlet P, Després L (2012) Two methods to easily obtain nucleotide sequences from AFLP loci of interest. Methods Mol Biol 888:91–108

    Article  PubMed  Google Scholar 

  • Park TH, Gros J, Sikkema A, Vleeshouwers VG, Muskens M, Allefs S, Jacobsen E, Visser RG, van der Vossen EA (2005a) The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant-Microbe Interact 18:722–729

    Article  PubMed  CAS  Google Scholar 

  • Park TH, Vleeshouwers VG, Huigen DJ, van der Vossen EA, van Eck HJ, Visser RG (2005b) Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato. Theor Appl Genet 111:591–597

    Article  PubMed  CAS  Google Scholar 

  • Pérez W, Salas A, Raymundo R, Huamán Z, Nelson R, Bonierbale M (2001) Evaluation of wild potato species for resistance to late blight. CIP Program Report 1999-2000. International Potato Center, Lima, pp 49–62

  • Pineda O, Bonierbale MW, Plaisted RL, Brodie BB, Tanksley SD (1993) Identification of RFLP markers linked to the H1 gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Genome 36:152–156

    Article  PubMed  CAS  Google Scholar 

  • Ross H (1986) Potato breeding-problems and perspectives. J Plant Breed. Paul Parey Scientific Pub, Berlin and Hamburg, pp 82–86

    Google Scholar 

  • Sakamoto Y, Mori K, Matsuo Y, Mukojima N, Watanabe W, Sobaru N, Tamiya S, Nakao T, Hayashi K, Watanuki H, Nara K, Yamazaki K, Chaya M (2017) Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed Sci 67:320–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasazaki S, Imada T, Mutoh H, Yoshizawa K, Mannen H (2006) Breed discrimination using DNA markers derived from AFLP in Japanese beef cattle. Asian Aust J Anim Sci 19:1106–1110

    Article  CAS  Google Scholar 

  • Sayama M, Ogawa T, Mukaida Y (2003) Characteristics of Phytophthora infestans isolates collected from potato crops in all area of Shimabara peninsula of Nagasaki prefecture in 2002. Kyushu Pl Prot Res 49:9–12

    Article  Google Scholar 

  • Shirasawa K, Kishitani S, Nishio T (2004) Conversion of AFLP markers to sequence-specific markers for closely related lines in rice by use of the rice genome sequence. Mol Breed 14:283–292

    Article  Google Scholar 

  • Takase N, Takakuwa M (1957) The designation according to the international system of pathogenic races of Phytophthora infestans and of genes for resistance to late blight in Japan. Ann Phytopahhol Soc Jan 22:79–82

  • Tanaka T, Komura K (2000) Development of a genetic diagnosis technique for detection of resistant feature to Globodera rostochiensis in potato. Bull Nagasaki Agric For Exp Stn 26:1–18

  • Uchizawa H, Nishibe Y (1985) Cold field crop genetic resource information No. 2. Misc Pub Hokkaido Nat Agri Exp Sta 27:87–90

    Google Scholar 

  • Vleeshouwers VGAA, van Dooijeweert W, Keizer LCP, Sijpkes L, Govers F, Colon LT (1999) A laboratory assay for Phytophthora infestans resistance in various Solanum species reflects the field situation. Eur J Plant Pathol 105:241–250

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu D, Lou B, Xu H, Li S, Geng Z (2013) Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. Mar Biotechnol 15:221–229

    Article  CAS  Google Scholar 

  • Yasuda S, Kita T, Umemura Y (1995) Potato blight disease field resistance breeding line “WB88055-8”. Rep Hokkaido Branch, Jap Soc Breed & Hokkaido Branch, Crop Sci Soc Jap 36:128–129

    Google Scholar 

  • Zhu S, Vossen JH, Bergervoet M, Nijenhuis M, Kodde L, Kessel GJT, Vleeshouwers V, Visser RGF, Jacobsen E (2015) An updated conventional- and a novel GM potato late blight R gene differential set for virulence monitoring of Phytophthora infestans. Euphytica 202:219–234

    Article  Google Scholar 

Download references

Acknowledgements

R. Yoshii, Y. Noguchi, and N. Kimura, former part-time staff of the Nagasaki Prefectural Agriculture and Forestry Technology Development Center, have worked on materials management to support the experimental research. K. Komura and N. Nakata (Tajima) of former Nagasaki Prefectural Agricultural and Forestry Technology Development cooperated. N. Mukojima of Nagasaki Prefectural Agricultural and Forestry Technology Development cooperated. This work was supported by the staff of the Potato Laboratory of Agricultural Horticulture Research Division Nagasaki Prefectural Agriculture and Forestry Technology Development Center. I would like to express my appreciation here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Ohbayashi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 147 kb)

ESM 2

(PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohbayashi, K. Conversion of Existing AFLP Markers to SCAR Markers Linked to Globodera rostochiensis and Phytophthora infestans Resistance Could Be Performed Without Using Acrylamide Gel Electrophoresis. Potato Res. 64, 649–665 (2021). https://doi.org/10.1007/s11540-021-09499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-021-09499-9

Keywords

Navigation