Skip to main content
Log in

Sumsets of Wythoff sequences, Fibonacci representation, and beyond

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(\alpha = (1+\sqrt{5})/2\) and define the lower and upper Wythoff sequences by \(a_i = \lfloor i \alpha \rfloor \), \(b_i = \lfloor i \alpha ^2 \rfloor \) for \(i \ge 1\). In a recent interesting paper, Kawsumarng et al. proved a number of results about numbers representable as sums of the form \(a_i + a_j\), \(b_i + b_j\), \(a_i + b_j\), and so forth. In this paper I show how to derive all of their results, using one simple idea and existing free software called Walnut. The key idea is that for each of their sumsets, there is a relatively small automaton accepting the Fibonacci representation of the numbers represented. I also show how the automaton approach can easily prove other results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Barbé, F. von Haeseler, Limit sets of automatic sequences. Adv. Math. 175, 169–196 (2003)

    Article  MathSciNet  Google Scholar 

  2. J. Bell, T.F. Lidbetter, J. Shallit, Additive number theory via approximation by regular languages, in DLT 2018, vol. 11088, Lecture Notes in Computer Science, ed. by M. Hoshi, S. Seki (Springer, Berlin, 2018), pp. 121–132

    Google Scholar 

  3. L. Carlitz, R. Scoville, V.E. Hoggatt Jr., Fibonacci representations of higher order. Fibonacci Q. 10, 43–69 (1972)

    MathSciNet  MATH  Google Scholar 

  4. F.M. Dekking, J. Shallit, N.J.A. Sloane, Queens in exile: non-attacking queens on infinite chess boards. Electron. J. Combin. 27(1), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  5. C.F. Du, H. Mousavi, E. Rowland, L. Schaeffer, J. Shallit, Decision algorithms for Fibonacci-automatic words, II: related sequences and avoidability. Theor. Comput. Sci. 657, 146–162 (2017)

    Article  MathSciNet  Google Scholar 

  6. C.F. Du, H. Mousavi, L. Schaeffer, J. Shallit, Decision algorithms for Fibonacci-automatic words, III: enumeration and abelian properties. Int. J. Found. Comput. Sci. 29(8), 943–963 (2016)

    Article  MathSciNet  Google Scholar 

  7. M. Feinberg, Fibonacci–Tribonacci. Fibonacci Q. 1(3), 71–74 (1963)

    Google Scholar 

  8. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison-Wesley, Boston, 1979)

    MATH  Google Scholar 

  9. S. Kawsumarng, T. Khemaratchatakumthorn, P. Noppakaew, P. Pongsriiam, Sumsets associated with Wythoff sequences and Fibonacci numbers. Period. Math. Hung. (2020). https://doi.org/10.1007/s10998-020-00343-0

    Article  MATH  Google Scholar 

  10. C.G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29, 190–195 (1952)

    MathSciNet  Google Scholar 

  11. H. Mousavi, Automatic theorem proving in Walnut. Available at arXiv:1603.06017 (2016)

  12. H. Mousavi, L. Schaeffer, J. Shallit, Decision algorithms for Fibonacci-automatic words, I: basic results. RAIRO Inform. Théor. Appl. 50, 39–66 (2016)

    Article  MathSciNet  Google Scholar 

  13. H. Mousavi, J. Shallit, Mechanical proofs of properties of the Tribonacci word, in WORDS 2015, vol. 9304, Lecture Notes in Computer Science, ed. by F. Manea, D. Nowotka (Springer, Berlin, 2015), pp. 1–21

    Google Scholar 

  14. M. Petkovšek, H.S. Wilf, D. Zeilberger, A = B (A. K. Peters, Natick, 1996)

    Book  Google Scholar 

  15. A. Rajasekaran, J. Shallit, T. Smith, Additive number theory via automata theory. Theor. Comput. Syst. 64, 542–567 (2020)

    Article  MathSciNet  Google Scholar 

  16. R. Silber, A Fibonacci property of Wythoff pairs. Fibonacci Q. 14, 380–384 (1972)

    MathSciNet  MATH  Google Scholar 

  17. N.J.A. Sloane, et al., The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org (2020)

  18. E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. R. Liège 41, 179–182 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Shallit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shallit, J. Sumsets of Wythoff sequences, Fibonacci representation, and beyond. Period Math Hung 84, 37–46 (2022). https://doi.org/10.1007/s10998-021-00390-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-021-00390-1

Keywords

Navigation