Skip to main content
Log in

Adaptive Evolution of Lactococcus Lactis to Thermal and Oxidative Stress Increases Biomass and Nisin Production

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

High values of agitation and temperature lead to stressful conditions in the fermentations of Lactococcus lactis due to its aero-tolerant and mesophilic nature. Here, the adaptive laboratory evolution (ALE) technique was applied to increase biomass and nisin production yields by enhancing L. lactis subsp. lactis robustness at higher growth temperature and aeration rates. In two separate ALE experiments, after 162 serial transfers, optimum agitation and growth temperature of L. lactis were shifted from 40 rpm and 30 °C to 200 rpm and 37 °C, respectively. Oxidative and acid resistance were enhanced in the evolved strain. Whole-genome sequencing revealed the emergence of five single-nucleotide polymorphisms in the genome of the evolved strain in jag, DnaB, ArgR, cation transporter genes, and one putative protein. The evolved strain of L. lactis in this study has more industrial desirable features and improved nisin production capability and can act more efficiently in nisin production in stressful conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The genomic sequence data were deposited and available in GenBank under the accession number SAMN12990279. The bacterial strains were deposited in the University of Tehran Microorganisms Collection.

References

  1. Özel, B., Şimşek, Ö., Akçelik, M., & Saris, P. E. (2018). Innovative approaches to nisin production. Applied microbiology and biotechnology, 102(15), 6299–6307.

    Article  PubMed  CAS  Google Scholar 

  2. Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of applied microbiology, 120(6), 1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song, A. A.-L., In, L. L., Lim, S. H. E., & Rahim, R. A. (2017). A review on Lactococcus lactis: From food to factory. Microbial cell factories, 16(1), 1–15.

    CAS  Google Scholar 

  4. Peterbauer, C., Maischberger, T., & Haltrich, D. (2011). Food-grade gene expression in lactic acid bacteria. Biotechnology journal, 6(9), 1147–1161.

    Article  CAS  PubMed  Google Scholar 

  5. Azizpour, M., Hosseini, S., Jafari, P., & Akbary, N. (2016). Lactococcus lactis as a live delivery vector. Vaccine Research, 3(3), 39–43.

    Google Scholar 

  6. Abbasiliasi, S., Tan, J. S., Ibrahim, T. A. T., Bashokouh, F., Ramakrishnan, N. R., Mustafa, S., & Ariff, A. B. (2017). Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. Rsc Advances, 7(47), 29395–29420.

    Article  CAS  Google Scholar 

  7. Jiang, L., Liu, Y., Yan, G., Cui, Y., Cheng, Q., Zhang, Z., Meng, Q., Teng, L., & Ren, X. (2015). Aeration and fermentation strategies on nisin production. Biotechnology letters, 37(10), 2039–2045.

    Article  CAS  PubMed  Google Scholar 

  8. Hao, P., Liang, D., Cao, L., Qiao, B., Wu, H., Caiyin, Q., Zhu, H., & Qiao, J. (2017). Promoting acid resistance and nisin yield of Lactococcus lactis F44 by genetically increasing D-Asp amidation level inside cell wall. Applied microbiology and biotechnology, 101(15), 6137–6153.

    Article  CAS  PubMed  Google Scholar 

  9. Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12(1), 1–17.

    Article  Google Scholar 

  10. Papadimitriou, K., Alegría, Á., Bron, P. A., De Angelis, M., Gobbetti, M., Kleerebezem, M., Lemos, J. A., Linares, D. M., Ross, P., & Stanton, C. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, J., Shen, J., Hellgren, L. I., Jensen, P. R., & Solem, C. (2015). Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Scientific reports, 5(1), 1–15.

    Google Scholar 

  12. Smith, W. M., Pham, T. H., Lei, L., Dou, J., Soomro, A. H., Beatson, S. A., Dykes, G. A., & Turner, M. S. (2012). Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth. Applied and environmental microbiology, 78(21), 7753–7759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. López-González, M. J., Campelo, A. B., Picon, A., Rodríguez, A., & Martínez, B. (2018). Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter. BMC microbiology, 18(1), 1–10.

    Article  CAS  Google Scholar 

  14. Şimşek, Ö., Akkoç, N., Con, A., Özçelik, F., Saris, P., & Akçelik, M. (2009). Continuous nisin production with bioengineered Lactococcus lactis strains. Journal of Industrial Microbiology and Biotechnology, 36(6), 863–871.

    Article  PubMed  CAS  Google Scholar 

  15. Lv, W., Cong, W., & Cai, Z. (2004). Nisin production by Lactococcus lactis subsp. lactis under nutritional limitation in fed-batch culture. Biotechnology letters, 26(3), 235–238.

    Article  PubMed  Google Scholar 

  16. Ariana, M., & Hamedi, J. (2017). Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium. Journal of biotechnology, 256, 21–26.

    Article  CAS  PubMed  Google Scholar 

  17. Sakthiselvan, P., Meenambiga, S.S., & Madhumathi, R. (2019). Kinetic Studies on Cell Growth, in Cell Growth. IntechOpen.

    Google Scholar 

  18. Pongtharangkul, T., & Demirci, A. (2004). Evaluation of agar diffusion bioassay for nisin quantification. Applied microbiology and biotechnology, 65(3), 268–272.

    Article  CAS  PubMed  Google Scholar 

  19. Burchell, M. J., Mann, J., & Bunch, A. W. (2004). Survival of bacteria and spores under extreme shock pressures. Monthly Notices of the Royal Astronomical Society, 352(4), 1273–1278.

    Article  Google Scholar 

  20. Pericone, C. D., Park, S., Imlay, J. A., & Weiser, J. N. (2003). Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction. Journal of bacteriology, 185(23), 6815–6825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, W. S., Ren, J., & Dunn, N. W. (1999). Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses. FEMS Microbiology Letters, 171(1), 57–65.

    Article  CAS  PubMed  Google Scholar 

  22. Shehata, M. G., El-Sahn, M. A., El Sohaimy, S. A., & Youssef, M. M. (2019). In vitro assessment of hypocholesterolemic activity of Lactococcus lactis subsp. lactis. Bulletin of the National Research Centre, 43(1), 60.

    Article  Google Scholar 

  23. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., & Prjibelski, A. D. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., & Kubal, M. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC genomics, 9(1), 1–15.

    Article  CAS  Google Scholar 

  25. Lowe, T. M., & Chan, P. P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic acids research, 44(W1), W54–W57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic acids research, 35(9), 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seemann. (2015). snippy: fast bacterial variant calling from NGS reads. https://githubcom/tseemann/snippy.

  28. Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, W. M., Dykes, G. A., Soomro, A. H., & Turner, M. S. (2010). Molecular mechanisms of stress resistance in Lactococcus lactis. Topics in Applied Microbiology and Microbial Biotechnology, 1106–1118.

  30. Oliveira, L. C., Saraiva, T. D., Silva, W. M., Pereira, U. P., Campos, B. C., Benevides, L. J., Rocha, F. S., Figueiredo, H. C., Azevedo, V., & Soares, S. C. (2017). Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One, 12(4), e0175116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhang, C., Wohlhueter, R., & Zhang, H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Science and Human Wellness, 5(3), 116–123.

    Article  Google Scholar 

  32. Serrazanetti, D. I., Gottardi, D., Montanari, C., & Gianotti, A. (2013). Dynamic stresses of lactic acid bacteria associated to fermentation processes, in Lactic Acid Bacteria-R & D for Food. Health and Livestock Purposes.

  33. Mall, P., Mohanty, B. K., Patankar, D. B., Mody, R., & Tunga, R. (2010). Physiochemical parameters optimization for enhanced nisin production by Lactococcus lactis (MTCC 440). Brazilian Archives of Biology and Technology, 53(1), 203–209.

    Article  CAS  Google Scholar 

  34. Dussault, D., Vu, K. D., & Lacroix, M. (2016). Enhancement of nisin production by Lactococcus lactis subsp. lactis. Probiotics and antimicrobial proteins, 8(3), 170–175.

    Article  CAS  PubMed  Google Scholar 

  35. Waites, M. J., Morgan, N. L., Rockey, J. S., & Higton, G. (2009). Industrial microbiology: An introduction. John Wiley & Sons.

  36. Baltz, R. H., Demain, A. L., & Davies, J. E. (2010). Manual of industrial microbiology and biotechnology. American Society for Microbiology Press.

  37. De Vuyst, L., & Vandamme, E. J. (1992). Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. Microbiology, 138(3), 571–578.

    Google Scholar 

  38. Kim, W., Hall, R., & Dunn, N. (1997). The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Applied Microbiology and Biotechnology, 48(4), 449–453.

    Article  CAS  PubMed  Google Scholar 

  39. Fenster, K., Freeburg, B., Hollard, C., Wong, C., Rønhave Laursen, R., & Ouwehand, A. C. (2019). The production and delivery of probiotics: A review of a practical approach. Microorganisms, 7(3), 83.

    Article  CAS  PubMed Central  Google Scholar 

  40. Sun, X., Ge, F., Xiao, C.-L., Yin, X.-F., Ge, R., Zhang, L.-H., & He, Q.-Y. (2010). Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. Journal of proteome research, 9(1), 275–282.

    Article  CAS  PubMed  Google Scholar 

  41. Ulrych, A., Holečková, N., Goldová, J., Doubravová, L., Benada, O., Kofroňová, O., Halada, P., & Branny, P. (2016). Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC microbiology, 16(1), 1–19.

    Article  CAS  Google Scholar 

  42. Frees, D., Vogensen, F. K., & Ingmer, H. (2003). Identification of proteins induced at low pH in Lactococcus lactis. International journal of food microbiology, 87(3), 293–300.

    Article  CAS  PubMed  Google Scholar 

  43. Rallu, F., Gruss, A., Ehrlich, S. D., & Maguin, E. (2000). Acid- and multistress-resistant mutants of Lactococcus lactis: Identification of intracellular stress signals. Molecular microbiology, 35(3), 517–528.

    Article  CAS  PubMed  Google Scholar 

  44. Haney, C. J., Grass, G., Franke, S., & Rensing, C. (2005). New developments in the understanding of the cation diffusion facilitator family. Journal of Industrial Microbiology and Biotechnology, 32(6), 215–226.

    Article  CAS  PubMed  Google Scholar 

  45. Turner, M. S., Tan, Y. P., & Giffard, P. M. (2007). Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Applied and Environmental Microbiology, 73(19), 6144–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Larsen, R., Buist, G., Kuipers, O. P., & Kok, J. (2004). ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis. Journal of bacteriology, 186(4), 1147–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong, L., Teng, J. L., Watt, R. M., Liu, C., Lau, S. K., & Woo, P. C. (2015). Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses. Environmental microbiology, 17(11), 4469–4483.

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, C., Dong, Z., Han, X., Sun, J., Wang, H., Jiang, L., Yang, Y., Ma, T., Chen, Z., & Yu, J. (2017). Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Frontiers in microbiology, 8, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Budin-Verneuil, A., Maguin, E., Auffray, Y., Ehrlich, S. D., & Pichereau, V. (2004). An essential role for arginine catabolism in the acid tolerance of Lactococcus lactis MG1363. Le Lait, 84(1-2), 61–68.

    Article  CAS  Google Scholar 

  50. Huang, R., Pan, M., Wan, C., Shah, N. P., Tao, X., & Wei, H. (2016). Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress. Journal of dairy science, 99(2), 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  51. Wu, H., Liu, J., Miao, S., Zhao, Y., Zhu, H., Qiao, M., Saris, P. E. J., & Qiao, J. (2018). Contribution of YthA, a PspC family transcriptional regulator of Lactococcus lactis F44 acid tolerance and nisin yield: A transcriptomic approach. Applied and environmental microbiology, 84(6).

  52. Li, Y., & Araki, H. (2013). Loading and activation of DNA replicative helicases: The key step of initiation of DNA replication. Genes to Cells, 18(4), 266–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saluja, D., & Godson, G. N. (1995). Biochemical characterization of Escherichia coli temperature-sensitive dnaB mutants dnaB8, dnaB252, dnaB70, dnaB43, and dnaB454. Journal of Bacteriology, 177(4), 1104–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carney, S. M., Gomathinayagam, S., Leuba, S. H., & Trakselis, M. A. (2017). Bacterial DnaB helicase interacts with the excluded strand to regulate unwinding. Journal of Biological Chemistry, 292(46), 19001–19012.

    Article  CAS  Google Scholar 

  55. Naranjo-Briceño, L., Pernía, B., Guerra, M., Demey, J. R., De Sisto, Á., Inojosa, Y., González, M., Fusella, E., Freites, M., & Yegres, F. (2013). Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microbial biotechnology, 6(6), 720–730.

    PubMed  PubMed Central  Google Scholar 

  56. Nitharwal, R. G., Paul, S., Dar, A., Choudhury, N. R., Soni, R. K., Prusty, D., Sinha, S., Kashav, T., Mukhopadhyay, G., & Chaudhuri, T. K. (2007). The domain structure of Helicobacter pylori DnaB helicase: The N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function. Nucleic acids research, 35(9), 2861–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RP has done the experiments and wrote the manuscript, and JH designed and supervised the experiments and edited the manuscript.

Corresponding author

Correspondence to Javad Hamedi.

Ethics declarations

Ethical Approval

The authors, Reyhaneh Papiran (RP) and Javad Hamedi (JH), considered all related ethical and bioethical rules.

Consent to Participate

The authors consented to participate the current research.

Consent for Publication

The authors approved the manuscript and agree to publish it in current form in ABAB.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papiran, R., Hamedi, J. Adaptive Evolution of Lactococcus Lactis to Thermal and Oxidative Stress Increases Biomass and Nisin Production. Appl Biochem Biotechnol 193, 3425–3441 (2021). https://doi.org/10.1007/s12010-021-03609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03609-6

Keywords

Navigation