Skip to main content
Log in

Modeling the temperature, crystallization, and residual stress for selective laser sintering of polymeric powder

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A thermomechanical model is developed to predict the temperature, degree of crystallization, residual stress, and strain in the selective laser sintering process for polymeric powder. Especially, a transient heat transfer model is used to calculate the temperature evolution. An elastic–viscoplastic model is developed to describe the temperature- and time-dependent stress–strain behavior of polymeric materials with crystallization-induced strain being included. A crystallization model is used to predict the relative crystallization degree during the cooling process. The sintering process and cooling process of polyamide 12 are simulated using the developed model. The melt pool depth and the deformation of the printed parts are validated by the experimental results. The evolutions of the temperature, relative degree of crystallization, strain, and stress are evaluated. The effects of the cooling rate on the strain and stress evolutions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Goodridge, R.D., Tuck, C.J., Hague, R.J.M.: Laser sintering of polyamides and other polymers. Prog. Mater Sci. 57, 229–267 (2012)

    Article  Google Scholar 

  2. Yuan, S., Shen, F., Chua, C.K., Zhou, K.: Polymeric composites for powder-based additive manufacturing: materials and applications. Prog. Polym. Sci. 91, 141–168 (2019)

    Article  Google Scholar 

  3. Valino, A.D., Dizon, J.R.C., Espera, A.H., Chen, Q., Messman, J., Advincula, R.C.: Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 98, 101162 (2019)

    Article  Google Scholar 

  4. Tan, L.J., Zhu, W., Zhou, K.: Recent progress on polymer materials for additive manufacturing. Adv. Funct. Mater. 30(43), 2003062 (2020)

    Article  Google Scholar 

  5. Verbelen, L., Dadbakhsh, S., Van den Eynde, M., Kruth, J.-P., Goderis, B., Van Puyvelde, P.: Characterization of polyamide powders for determination of laser sintering processability. Eur. Polym. J. 75, 163–174 (2016)

    Article  Google Scholar 

  6. Laumer, T., Stichel, T., Nagulin, K., Schmidt, M.: Optical analysis of polymer powder materials for Selective Laser Sintering. Polym. Testing 56, 207–213 (2016)

    Article  Google Scholar 

  7. Caulfield, B., McHugh, P.E., Lohfeld, S.: Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 182, 477–488 (2007)

    Article  Google Scholar 

  8. Peyre, P., Rouchausse, Y., Defauchy, D., Régnier, G.: Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J. Mater. Process. Technol. 225, 326–336 (2015)

    Article  Google Scholar 

  9. Yuan, S., Bai, J., Chua, C.K., Wei, J., Zhou, K.: Material evaluation and process optimization of CNT-coated polymer powders for selective laser sintering. Polymers (Basel) 8(10), 370 (2016)

    Article  Google Scholar 

  10. Yuan, S., Bai, J., Chua, C.K., Wei, J., Zhou, K.: Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos. A Appl. Sci. Manuf. 90, 699–710 (2016)

    Article  Google Scholar 

  11. Sachdeva, A., Singh, S., Sharma, V.S.: Investigating surface roughness of parts produced by SLS process. Int. J. Adv. Manuf. Technol. 64, 1505–1516 (2012)

    Article  Google Scholar 

  12. Li, J., Yuan, S., Zhu, J., Li, S., Zhang, W.: numerical model and experimental validation for laser sinterable semi-crystalline polymer: shrinkage and warping. Polymers (Basel) 12(6), 1373 (2020)

    Article  Google Scholar 

  13. Wang, R.-J., Wang, L., Zhao, L., Liu, Z.: Influence of process parameters on part shrinkage in SLS. Int. J. Adv. Manuf. Technol. 33, 498–504 (2006)

    Article  Google Scholar 

  14. Chowdhury, S., Mhapsekar, K., Anand, S.: Part build orientation optimization and neural network-based geometry compensation for additive manufacturing process. J. Manuf. Sci. Eng. (2018). https://doi.org/10.1115/1.4038293

    Article  Google Scholar 

  15. Shen, F., Yuan, S., Chua, C.K., Zhou, K.: Development of process efficiency maps for selective laser sintering of polymeric composite powders: modeling and experimental testing. J. Mater. Process. Technol. 254, 52–59 (2018)

    Article  Google Scholar 

  16. Dong, L., Makradi, A., Ahzi, S., Remond, Y.: Three-dimensional transient finite element analysis of the selective laser sintering process. J. Mater. Process. Technol. 209, 700–706 (2009)

    Article  Google Scholar 

  17. Riedlbauer, D., Drexler, M., Drummer, D., Steinmann, P., Mergheim, J.: Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12. Comput. Mater. Sci. 93, 239–248 (2014)

    Article  Google Scholar 

  18. Balemans, C., Looijmans, S.F.S.P., Grosso, G., Hulsen, M.A., Anderson, P.D.: Numerical analysis of the crystallization kinetics in SLS. Addit. Manuf. 33, 101126 (2020)

    Google Scholar 

  19. Khairallah, S.A., Anderson, A.: Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Process. Technol. 214, 2627–2636 (2014)

    Article  Google Scholar 

  20. Yan, W., Ge, W., Qian, Y., Lin, S., Zhou, B., Liu, W.K., et al.: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater. 134, 324–333 (2017)

    Article  Google Scholar 

  21. Dai, D., Gu, D., Ge, Q., Ma, C., Shi, X., Zhang, H.: Thermodynamics of molten pool predicted by computational fluid dynamics in selective laser melting of Ti6Al4V: surface morphology evolution and densification behavior. Comput. Model. Eng. Sci. 124, 1085–1098 (2020)

    Google Scholar 

  22. Cao, L.: Mesoscopic-scale numerical investigation including the inuence of process parameters on LPBF multi-layer multi-path formation. Comput. Model. Eng. Sci. 126, 5–23 (2021)

    Google Scholar 

  23. Yan, W., Lin, S., Kafka, O.L., Lian, Y., Yu, C., Liu, Z., et al.: Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing. Comput. Mech. 61, 521–541 (2018)

    Article  MATH  Google Scholar 

  24. Li, J., Jin, R., Yu, H.Z.: Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing. Mater. Des. 139, 473–485 (2018)

    Article  Google Scholar 

  25. Francis, J., Bian, L.: Deep learning for distortion prediction in laser-based additive manufacturing using big data. Manuf. Lett. 20, 10–14 (2019)

    Article  Google Scholar 

  26. Wang, C., Li, S., Zeng, D., Zhu, X.: Quantification and compensation of thermal distortion in additive manufacturing: a computational statistics approach. Comput. Methods Appl. Mech. Eng. 375, 113611 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Manshoori Yeganeh, A., Movahhedy, M.R., Khodaygan, S.: An efficient scanning algorithm for improving accuracy based on minimising part warping in selected laser sintering process. Virtual Phys. Prototyp. 14, 59–78 (2018)

    Article  Google Scholar 

  28. Arruda, E.M., Boyce, M.C., Jayachandran, R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)

    Article  Google Scholar 

  29. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39, 39–52 (2007)

    Article  Google Scholar 

  30. Garcia-Gonzalez, D., Zaera, R., Arias, A.: A hyperelastic-thermoviscoplastic constitutive model for semi-crystalline polymers: application to PEEK under dynamic loading conditions. Int. J. Plast. 88, 27–52 (2017)

    Article  Google Scholar 

  31. Yu, C., Kang, G., Chen, K.: A hygro-thermo-mechanical coupled cyclic constitutive model for polymers with considering glass transition. Int. J. Plast. 89, 29–65 (2017)

    Article  Google Scholar 

  32. Benedetti, L., Brulé, B., Decreamer, N., Evans, K.E., Ghita, O.: Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12. Mater. Des. 181, 107906 (2019)

    Article  Google Scholar 

  33. Zhu, W., Yan, C., Shi, Y., Wen, S., Liu, J., Shi, Y.: Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts. Mater. Des. 82, 37–45 (2015)

    Article  Google Scholar 

  34. Zhao, M., Wudy, K., Drummer, D.: Crystallization kinetics of polyamide 12 during selective laser sintering. Polymers 10(2), 168 (2018)

    Article  Google Scholar 

  35. Shen, F., Kang, G., Lam, Y.C., Liu, Y., Zhou, K.: Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers. Int. J. Plast. 121, 227–243 (2019)

    Article  Google Scholar 

  36. Maurel-Pantel, A., Baquet, E., Bikard, J., Bouvard, J.L., Billon, N.: A thermo-mechanical large deformation constitutive model for polymers based on material network description: application to a semi-crystalline polyamide 66. Int. J. Plast. 67, 102–126 (2015)

    Article  Google Scholar 

  37. Melro, A.R., Camanho, P.P., Andrade Pires, F.M., Pinho, S.T.: Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part I - constitutive modelling. Int. J. Solids Struct. 50, 1897–1905 (2013)

    Article  Google Scholar 

  38. Nguyen, V.D., Lani, F., Pardoen, T., Morelle, X.P., Noels, L.: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. J. Solids Struct. 96, 192–216 (2016)

    Article  Google Scholar 

  39. Zerbe, P., Schneider, B., Moosbrugger, E., Kaliske, M.: A viscoelastic-viscoplastic-damage model for creep and recovery of a semicrystalline thermoplastic. Int. J. Solids Struct. 110–111, 340–350 (2017)

    Article  Google Scholar 

  40. Soldner, D., Greiner, S., Burkhardt, C., Drummer, D., Steinmann, P., Mergheim, J.: Numerical and experimental investigation of the isothermal assumption in selective laser sintering of PA12. Addit. Manuf. 37, 101676 (2021)

    Google Scholar 

  41. Nakamura, K., Watanabe, T., Katayama, K., Amano, T.: Some aspects of nonisothermal crystallization of polymers. I. Relationship between crystallization temperature, crystallinity, and cooling conditions. J. Appl. Polym. Sci. 16, 1077–1091 (1972)

    Article  Google Scholar 

  42. Nakamura, K., Katayama, K., Amano, T.: Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition. J. Appl. Polym. Sci. 17, 1031–1041 (1973)

    Article  Google Scholar 

  43. Patel, R.M., Spruiell, J.E.: Crystallization kinetics during polymer processing—analysis of available approaches for process modeling. Polym. Eng. Sci. 31, 730–738 (1991)

    Article  Google Scholar 

  44. EMS-CHEMIE: Grilamid polyamide 12 technical polymer for highest demands. pp. 1–40 (2017)

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 12002234), the research start-up foundation of Tianjin University (0903061122), and the opening project of Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Zhu, W., Zhou, K. et al. Modeling the temperature, crystallization, and residual stress for selective laser sintering of polymeric powder. Acta Mech 232, 3635–3653 (2021). https://doi.org/10.1007/s00707-021-03020-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03020-6

Navigation