Skip to main content
Log in

Hybrid RF/VLC Communications Using Reconfigurable Intelligent Surfaces

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we suggest the use of Reconfigurable Intelligent Surfaces (RIS) for hybrid Radio Frequency (RF) Visible Light Communications (VLC). The signal is transmitted from a transmitter T to a relay C using RIS. RIS is implemented as a transmitter or a reflector between T and C. The relay node C decodes the received signal and transmits it to the receiver R using a VLC link. The proposed VLC/RF communications using RIS offers 20–45 dB gain with respect to conventional RF/VLC when the number of reflectors N is varied from \(N=16\) to \(N=256\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basnayaka, D. A., & Haas, H. (2015). Hybrid RF and VLC systems: Improving user data rate performance of VLC systems. In IEEE 81st vehicular technology conference (VTC spring).

  2. Ashimbayeva, A., Kalikulov, N., & Kizilirmak, R. C. (2017). Hard and soft switching for indoor hybrid VLC/RF systems. In 2017 IEEE 11th international conference on application of information and communication technologies (AICT).

  3. Al-khori, J., Nauryzbayev, G., Abdallah, M., & Hamdi, M. (2019). Secrecy capacity of hybrid RF/VLC DF relaying networks with jamming. In International Conference on Computing, Networking and Communications (ICNC).

  4. Obeed, M., Salhab, A. M., Zummo, S. A., & Alouini, M.-S. (2018). Joint optimization of power allocation and load balancing for hybrid VLC/RF networks. IEEE/OSA Journal of Optical Communications and Networking, 10(5), 553–562.

    Article  Google Scholar 

  5. Little, T. D. C., & Rahaim, M. (2015). Network topologies for mixed RF-VLC HetNets. In 2015 IEEE summer topicals meeting series (SUM).

  6. Aboagye, S., Ngatched, T. M. N., Dobre, O. A., & Ibrahim, A. (2021). Joint access point assignment and power allocation in multi-tier hybrid RF/VLC HetNets. IEEE Transactions on Wireless Communications (early access article).

  7. Huang, X.-H., Lu, H.-H., Chang, P.-S., Liu, C.-X., Lin, Y.-Y., Ko, T., & Chen, Y.-T. (2021). Bidirectional white-lighting WDM VLC-UWOC converged systems. Journal of Lightwave Technology (early access article).

  8. Pall, S. C., Tanim, M. M. H., Jabiullah, M., Ahsan, E. E., & Hasan, M. G. (2021). BER performance analysis of different O-OFDM techniques in VLC. In International conference on information and communication technology for sustainable development (ICICT4SD).

  9. Ismail, T., Gad, M. E., & Mokhtar, B. (2021). Integrated VLC/RF wireless technologies for reliable content caching system in vehicular networks. IEEE Access, 9, 51855–51864.

    Article  Google Scholar 

  10. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773.

    Article  Google Scholar 

  11. Zhang, H., Di, B., Song, L., & Han, Z. (2020). Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough? IEEE Transactions on Vehicular Technology, 69(4), 4498–4502.

    Article  Google Scholar 

  12. Di Renzo, M. (2019). 6G wireless: Wireless networks empowered by reconfigurable intelligent surfaces. In: 25th Asia-pacific conference on communications (APCC).

  13. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications (early access article)

  14. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  15. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170.

    Article  Google Scholar 

  16. Alexandropoulos, G. C., & Vlachos, E. (2020). A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP).

  17. Guo, H., Liang, Y.-C., Chen, J., & Larsson, E. G. (2020). Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Transactions on Wireless Communications (early access article).

  18. Thirumavalavan, V. C., & Jayaraman, T. S. (2020). BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In 2020 international conference on communication systems and networks (COMSNETS).

  19. Pradhan, C., Li, A., Song, L., Vucetic, B., & Li, Y. (2020). Hybrid precoding design for reconfigurable intelligent surface aided mm wave communication systems. IEEE Wireless Communications Letters (early access article).

  20. Ying, K., Gao, Z., Lyu, S., Wu, Y., Wang, H., & Alouini, M.-S. (2020). GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access, 8, 19530–19539.

    Article  Google Scholar 

  21. Yang, L., Guo, W., & Ansari, I. S. (2020). Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Communications Letters (early access article).

  22. Di, B., Zhang, H., Li, L., Song, L., Li, Y., & Han, Z. (2020). Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Transactions on Vehicular Technology, 69(4), 4565–4570.

    Article  Google Scholar 

  23. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., et al. (2020). Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access, 8, 45913–45923.

    Article  Google Scholar 

  24. Nadeem, Q.-U.-A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M.-S. (2020). Asymptotic max–min SINR analysis of reconfigurable intelligent surface assisted MISO systems

  25. Zhao, W., Wang, G., Atapattu, S., Tsiftsis, T. A., & Tellambura, C. (2020). Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Communications Letters (early access article).

  26. Li, S., Duo, B., Yuan, X., Liang, Y.-C., Di, R, & Marco (2020). Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming. IEEE Wireless Communications Letters (early access article).

  27. Hua, S., & Shi, Y. (2019). Reconfigurable intelligent surface for green edge inference in machine learning. In 2019 IEEE globecom workshops (GC Wkshps).

  28. Huang, C., Alexandropoulos, G. C., Yuen, C., & Debbah, M. (2019). Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces. In 2019 IEEE 20th international workshop on signal processing advances in wireless communications (SPAWC).

  29. Alnwaimi, G., & Boujemaa, H. (2019). Instantaneous and average throughput maximization for visible light communications. In IEEE international conference on telecommunications (pp. 210–214). Ha Noi, Vietnam April 8–10.

  30. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  31. Proakis, J. (2007). Digital communications (5th ed.). New York: Mac Graw-Hill.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Alnwaimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnwaimi, G., Boujemaa, H. Hybrid RF/VLC Communications Using Reconfigurable Intelligent Surfaces. Wireless Pers Commun 121, 1533–1545 (2021). https://doi.org/10.1007/s11277-021-08683-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08683-x

Keywords

Navigation