Skip to main content
Log in

Preparation and Characterization of Amino-Functionalized Zeolite/SiO2 Materials for Trypsin–Chymotrypsin Co-immobilization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

A Correction to this article was published on 27 May 2021

This article has been updated

Abstract

Inorganic supports have attracted increased attention in enzyme immobilization since they not only improve enzyme stability but also reduce the final cost of enzymatic reactions. Herein, we explored the suitability of the amino-functionalized zeolite/SiO2 materials to co-immobilize trypsin–chymotrypsin mixture. For this purpose, the trypsin–chymotrypsin mixture was co-immobilized on the amino-functionalized zeolite/SiO2 materials and the immobilization yield was 80.7 ± 7.6%. The pre-support and its modification were characterized by several techniques. Besides, the charges of the materials were investigated by zeta potentials at pH 5.0. As expected, the zeta potentials shifted from − 24.4 to − 8.16 mV after amino functionalization. Following immobilization, whereas the optimum pH (9.0) was not changed, the optimum temperature shifted from 50 to 40 °C. On the other hand, the immobilized trypsin–chymotrypsin showed comparatively higher thermal stability and storage stability than the soluble trypsin–chymotrypsin. The kinetic parameters were also calculated, however, while no significant change was observed in Vmax, Km value increased, which means that the affinity of enzyme to the substrate decreased after immobilization. Most strikingly, the residual activity of immobilized trypsin–chymotrypsin was 58% after eight repeated cycles. In conclusion, the preliminary experiments inferred that the amino-functionalized zeolite/SiO2 particles can be suitable and helpful support for trypsin–chymotrypsin immobilization.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Sun J, Xu B, Shi Y, Ma HL (2017) Adv Mater Sci Eng 2017:1457072

    Google Scholar 

  2. Sahin S, Ozmen I (2020) J Pharm Biomed Anal 184:113195

    Article  CAS  PubMed  Google Scholar 

  3. Peiman S, Baharfar R, Maleki B (2020) Mater Today Commun 26:101759

    Article  Google Scholar 

  4. Liu J, Liu Y, Jin D, Meng M, Jiang Y, Ni L, Liu Z (2019) Solid State Sci 89:15–24

    Article  CAS  Google Scholar 

  5. Homaei AA, Sariri R, Vianello F, Stevanato R (2013) J Chem Biol 6:185–205

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basso A, Serban S (2019) Mol Catal 479:110607

    Article  CAS  Google Scholar 

  7. Nwagu TN, Okolo B, Aoyagi H (2021) Bioresour Technol Rep 13:100645

    Article  Google Scholar 

  8. Hernández-Corroto E, Sánchez-Milla M, Sánchez-Nieves J, de la Mata FJ, Marina ML, Garcia MC (2020) Int J Biol Macromol 165:2338–2348

    Article  PubMed  Google Scholar 

  9. Lee CH, Lee HS, Lee JW, Kim J, Lee JH, Jin ES, Hwang ET (2021) Int J Biol Macromol 175:341–350

    Article  CAS  PubMed  Google Scholar 

  10. Mortazavi S, Aghaei H (2020) Int J Biol Macromol 164:1–12

    Article  CAS  PubMed  Google Scholar 

  11. Morellon-Sterling R, Siar EH, Braham SA, de Andrades D, Pedroche J, del Carmen MM, Fernandez-Lafuenteaf R (2021) J Biotechnol 329:128–142

    Article  CAS  PubMed  Google Scholar 

  12. Zdarta J, Meyer A, Jesionowski T, Pinelo M (2018) Catalysts 8:92

    Article  Google Scholar 

  13. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW, Knowles JC (2016) Prog Mater Sci 77:1–79

    Article  CAS  Google Scholar 

  14. Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112

    Article  CAS  Google Scholar 

  15. Deshmukh K, Kovářík T, Křenek T, Docheva D, Stich T, Pola J (2020) RSC Adv 10:33782–33835

    Article  CAS  Google Scholar 

  16. Sakaguchi K, Matsui M, Mizukami F (2005) Appl Microbiol Biotechnol 67:306–311

    Article  CAS  PubMed  Google Scholar 

  17. Valdés MG, Pérez-Cordoves AI, Díaz-García ME (2006) Trends Anal Chem 25:24–30

    Article  Google Scholar 

  18. Rosas-Arbelaez W, Fijneman AJ, Friedrich H, Palmqvist AEC (2020) RSC Adv 10:36459–36466

    Article  CAS  Google Scholar 

  19. Osatiashtiani A, Puértolas B, Oliveira CCS, Manayil JC, Barbero B, Isaacs M, Michailof C, Heracleous E, Pérez-Ramírez J, Lee AF, Wilson K (2017) Biomass Convers Biorefin 7:331–342

    Article  CAS  Google Scholar 

  20. Ghasemi Z, Sourinejad I, Kazemian H, Rohani S (2018) Rev Aquac 10:75–95

    Article  Google Scholar 

  21. Bacakova L, Vandrovcova M, Kopova I, Jirka I (2018) Biomater Sci 6:974–989

    Article  CAS  PubMed  Google Scholar 

  22. Soldatkin OO, Shelyakina MK, Arkhypova VN, Soy E, Kirdeciler SK, Kasap BO, Lagarde F, Jaffrezic-Renault N, Kurç BA, Soldatkin AP, Dzyadevych SV (2015) Nanoscale Res Lett 10:59

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hartmann M, Thommes M, Schwieger W (2021) Adv Mater Interfaces 8:2001841

    Article  Google Scholar 

  24. Kianfar E (2019) J Sol-Gel Sci Technol 91:415–429

    Article  CAS  Google Scholar 

  25. Kim JS, Lee S (2019) Polymers (Basel) 11(9):1462

    Article  CAS  Google Scholar 

  26. Kamburov M, Lalov I (2014) Biotechnol Biotechnol Equip 26:156–163

    Article  Google Scholar 

  27. Adriano WS, Mendonça DB, Rodrigues DS, Mammarella EJ, Giordano RLC (2008) Biomacromol 9:2170–2179

    Article  CAS  Google Scholar 

  28. Lysogorskaya EN, Roslyakova TV, Belyaeva AV, Bacheva AV, Lozinskii VI, Filippova IY (2008) Appl Biochem Microbiol 44:241–246

    Article  CAS  Google Scholar 

  29. Atacan K, Çakıroğlu B, Özacar M (2017) Colloids Surf B Biointerfaces 156:9–18

    Article  CAS  PubMed  Google Scholar 

  30. Ju HY, Kuo CH, Too JR, Huang HY, Twu YK, Chang CMJ, Liu YC, Shieh CJ (2012) J Mol Catal B Enzym 78:9–15

    Article  CAS  Google Scholar 

  31. Azevedo RDS, Amaral IPG, Ferreira ACM, Espósito TS, Bezerra RS (2018) Food Chem 257:302–309

    Article  CAS  PubMed  Google Scholar 

  32. Atacan K, Kursunlu AN, Ozmen M (2019) Mater Sci Eng C 94:886–893

    Article  CAS  Google Scholar 

  33. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  34. Aslani E, Abri A, Pazhang M (2018) Colloids Surf B Biointerfaces 170:553–562

    Article  CAS  PubMed  Google Scholar 

  35. Shameli K (2011) Ahmad M Bin, Zargar M, Yunus WMZW, Ibrahim NA. Int J Nanomed 6:331–341

    Article  CAS  Google Scholar 

  36. Jiao F, Zhai R, Huang J, Zhang Y, Qian X (2016) RSC Adv 6:84113–84118

    Article  CAS  Google Scholar 

  37. Gougazeh M, Buhl JC (2014) J Assoc Arab Univ Basic Appl Sci 15:35–42

    Google Scholar 

  38. Almasian A, Parvinzadeh Gashti M, Olya ME, Chizari Fard G (2016) Desalin Water Treat 57:20837–20855

    Article  CAS  Google Scholar 

  39. Srour H, Alnaboulsi A, Astafan A, Devers E, Toufaily J, Hamieh T, Pinard L, Batiot-Dupeyrat C (2019) Catalysts 9:783

    Article  CAS  Google Scholar 

  40. Elhassan DA (2016) Int J Adv Res 4:1692–1707

    Article  CAS  Google Scholar 

  41. Csáki S, Trnovcová V, Štubňa I, Ondruška J, Sunitrová I, Vozár L, Dobroň P (2017) AIP Conf Proc 1866:040008

    Article  Google Scholar 

  42. Liu H, Shen T, Li T, Yuan P, Shi G, Bao X (2014) Appl Clay Sci 90:53–60

    Article  CAS  Google Scholar 

  43. Trník A, Scheinherrová L (2015) Medved’ I, Černý R. J Therm Anal Calorim 121:67–73

    Article  Google Scholar 

  44. Ayari F, Mannei E (2020) Fine Chem Eng 1:47–57

    Google Scholar 

  45. Bouzerara F, Boulanacer S, Harabi A, Boudaira B, Achour S, Condom S (2009) Phys Procedia 2:1449–1453

    Article  CAS  Google Scholar 

  46. Peng Z, Wen J, Liu Y, Zeng G, Yi Y, Fang Y, Zhang S, Deng J, Cai X (2018) Environ Monit Assess 190:751

    Article  PubMed  Google Scholar 

  47. Ulu A, Ozcan I, Koytepe S, Ates B (2018) Int J Biol Macromol 115:1122–1130

    Article  CAS  PubMed  Google Scholar 

  48. Ulu A, Noma SAA, Koytepe S, Ates B (2018) Artif Cells, Nanomedicine. Biotechnol 46:1035–1045

    CAS  Google Scholar 

  49. Noma SAA, Ulu A, Koytepe S, Ateş B (2020) Biocatal Biotransform 38:392–404

    Article  CAS  Google Scholar 

  50. Blanco RM, Terreros P, Fernández-Pérez M, Otero C (2004) Dı́az-González G. J Mol Catal B Enzym 30:83–93

    Article  CAS  Google Scholar 

  51. Daglioglu C, Zihnioglu F (2012) Artif Cells, Blood Substitutes. Biotechnol 40:378–384

    CAS  Google Scholar 

  52. Li DF, Ding HC, Zhou T (2013) J Agric Food Chem 61:10447–10453

    Article  CAS  PubMed  Google Scholar 

  53. Guedidi S, Yurekli Y, Deratani A, Déjardin P, Innocent C, Altinkaya SA, Roudesli S, Yemenicioglu A (2010) J Memb Sci 365:59–67

    Article  CAS  Google Scholar 

  54. Ulu A, Noma SAA, Koytepe S, Ates B (2019) Appl Biochem Biotechnol 187:938–956

    Article  CAS  PubMed  Google Scholar 

  55. Tarhan T, Ulu A, Sariçam M, Çulha M, Ates B (2020) Int J Biol Macromol 142:443–451

    Article  CAS  PubMed  Google Scholar 

  56. Nawaz MA, Rehman HU, Bibi Z, Aman A, Ul Qader SH (2015) Biochem Biophys Rep 4:250–256

    PubMed  PubMed Central  Google Scholar 

  57. Agyei D, Tambimuttu S, Kasargod B, Gao Y, He L (2014) J Biotechnol 188:53–60

    Article  CAS  PubMed  Google Scholar 

  58. Atacan K, Çakiroǧlu B, Özacar M (2016) Food Chem 212:460–468

    Article  CAS  PubMed  Google Scholar 

  59. Kumari A, Kaur B, Srivastava R, Sangwan RS (2015) Biochem Biophys Reports 2:108–114

    Article  Google Scholar 

  60. Alfani F, Cantarella L, Cantarella M, Gallifuoco A, Colella C (1994) Stud Surf Sci Catal 84:1115–1122

    Article  CAS  Google Scholar 

  61. Talebi M, Vaezifar S, Jafary F, Fazilati M, Motamedi S (2016) Iran J Biotechnol 14:33–38

    Article  PubMed  PubMed Central  Google Scholar 

  62. Macario A, Katovic A, Giordano G, Forni L, Carloni F, Filippini A, Setti L (2005) Stud Surf Sci Catal 381–394

  63. Bayramoǧlu G, Yilmaz M, Şenel AÜ, Arica MY (2008) Biochem Eng J 40:262–274

    Article  Google Scholar 

  64. Bayramoglu G, Ozalp VC, Arica MY (2014) Ind Eng Chem Res 53:132–140

    Article  CAS  Google Scholar 

  65. Zdarta J, Antecka K, Jędrzak A, Synoradzki K, Luczak M, Jesionowski T (2018) Colloids Surf B Biointerfaces 169:118–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to the İnönü University.

Author information

Authors and Affiliations

Authors

Contributions

DD: Methodology, investigation, writing, SS: Methodology, investigation, writing, AU: Methodology, investigation, writing, SK: Methodology, investigation, writing, BA: Conceptualization, writing-review and editing, supervision, resources.

Corresponding authors

Correspondence to Ahmet Ulu or Burhan Ateş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, D., Sezer, S., Ulu, A. et al. Preparation and Characterization of Amino-Functionalized Zeolite/SiO2 Materials for Trypsin–Chymotrypsin Co-immobilization. Catal Lett 151, 2463–2477 (2021). https://doi.org/10.1007/s10562-021-03636-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03636-2

Keywords

Navigation