Skip to main content

Advertisement

Log in

Hydrostatic pressure effects on the processes of lattice thermal conductivity of bulk Silicon and nanowires

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The lattice thermal conductivity (LTC) of silicon nanowires (NWs) with diameters of 115, 56, 37 and 22 nm in the temperature range of 2–300 K for different pressures ranging from 0 to 10 GPa, was calculated by employing a modified Callaway model. Both longitudinal and transverse modes were explicitly considered within the model. A strategy is utilized to calculate the Debye and phonon group velocity in addition to the bulk modulus and it is derivative for different NW diameters from their related melting temperature under different pressures. The influence of the Gruneisen parameter, surface roughness and dislocation as structurally dependent parameters are successfully exploited to correlate the calculated values of LTC to that of the experimentally measured curves at various pressures including zero. The respective application of the Murnghan and Clapeyron equations for pressure-dependent lattice volume and melting temperature in the Callaway model produces results that tend to be systematically applicable by this model. The confinement and size effects of phonons and the role of pressure in the reduction of LTC are investigated. The peak value of LTC decreases with the increase of pressure for both bulk and its nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Laurent S, Bridot J L, Elst L V and Muller R 2010 Future Med. Chem. 2 427

    Article  CAS  Google Scholar 

  2. Callaway J 1959 Phys. Rev. 113 1046

    Article  CAS  Google Scholar 

  3. Omar M S and Taha H T 2010 Sadhana 35 177

    Article  CAS  Google Scholar 

  4. Hieu H K, Hung V V and Hung N V 2011 Commun. Phys. 21 245

    Article  Google Scholar 

  5. Duclos S J, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 41 12021

    Article  CAS  Google Scholar 

  6. Durandurdu M and Drabold D A 2003 Phys. Rev. B 67 212101

    Article  CAS  Google Scholar 

  7. John S and Tse 2019 Engineering 5 421

    Article  CAS  Google Scholar 

  8. Tang X and Dong J 2010 Proc. Natl. Acad. Sci. USA 107 4539

    Article  CAS  Google Scholar 

  9. Kinaci A, Haskins J B and Cagin T 2012 J. Chem. Phys. 137 01406

    Article  CAS  Google Scholar 

  10. Yang J, Fan Q, Yu Y and Zhang W 2018 Materials 11 2370

    Article  CAS  Google Scholar 

  11. Zou J 2010 J. Appl. Phys. 108 034324

    Article  CAS  Google Scholar 

  12. Zou J and Balandin A 2001 J. Appl. Phys. 89 2932

    Article  CAS  Google Scholar 

  13. Balandin A and Wang K L 1998 Phys. Rev. B 58 1544

    Article  CAS  Google Scholar 

  14. Khitun A, Balandin A and Wag K L 1999 Superlatt. Microstruct. 26 181

    Article  CAS  Google Scholar 

  15. Asen-Palmer M, Bartvoski K, Gmelin E and Cardona M 1997 Phys. Rev. B 56 9431

    Article  CAS  Google Scholar 

  16. Morell D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 195304

    Article  CAS  Google Scholar 

  17. Mamand S M, Omar M S and Muhamad A J 2012 Mater. Res. Bull. 47 1264

    Article  CAS  Google Scholar 

  18. Mingo N 2003 Phys. Rev. B 68 113308

    Article  CAS  Google Scholar 

  19. Li D 2002 PhD Thesis (Berkeley: University of California)

  20. Qader I N and Omar M S 2017 Bull. Mater. Sci. 40 599

    Article  CAS  Google Scholar 

  21. Omar M S 2012 Mater. Res. Bull. 47 3518

    Article  CAS  Google Scholar 

  22. Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244

    Article  CAS  Google Scholar 

  23. Magomedov M 2017 Phys. Solid State 59 1085

    Article  CAS  Google Scholar 

  24. Abdulla B J, Omar M S and Jiang Q 2018 Sadhana 48 174

    Article  CAS  Google Scholar 

  25. Abdulla B J, Jiang Q and Omar M S 2016 Bull. Mater. Sci. 39 1295

    Article  CAS  Google Scholar 

  26. Magomedov M N 2010 Study of interatomic interaction, vacancy formation and self-diffusion in crystals (Moscow: Fizmatlit) (in Russian)

  27. Kotchetkov D, Zou J, Balandin A, Florescu D I and Pollak F H 2001 Appl. Phys. Lett. 79 4316

    Article  CAS  Google Scholar 

  28. Laing L H and Li B 2006 Phys. Rev. B 73 53303

    Google Scholar 

  29. Dash J G 1999 Rev. Mod. Phys. 71 1737

    Article  CAS  Google Scholar 

  30. Post E J and Can J 1953 Canadian J. Phys. 31 112

    Article  CAS  Google Scholar 

  31. Zhang Z, Zhao M and Jiang Q 2001 Semicond. Sci. Technol. 16 33

    Article  CAS  Google Scholar 

  32. Lobo L Q and Ferreria A G M 2001 J. Chem. Thermodyn. 33 1597

    Article  CAS  Google Scholar 

  33. Yang C C and Jiang Q 2004 ScienceDirect 51 1081

    CAS  Google Scholar 

  34. R C Weast 1988-1989 CRC Handbook of Chemistry and Physics, 69th edn (CRC Press, Inc., Boca Raton, Florida), p B-219, B-217, F-12, F-27 and F-23

  35. Soler J M, Beltran M R, Michaelian K, Garzon I L, Ordejon P, Sanchez-Portal D et al 2000 Phys. Rev. B 61 5771

    Article  CAS  Google Scholar 

  36. Jiang Q, Liang L H and Zhao D S 2001 J. Phys. Chem. B 105 6275

    Article  CAS  Google Scholar 

  37. Jiang Q, Shi H X and Zhao M 1999 ScienceDirect 47 2109

    CAS  Google Scholar 

  38. Mott N F 1934 Proc. Royal Soc. A 146 465

    CAS  Google Scholar 

  39. Jiang Q, Zhou X H and Zhao M 2002 J. Chem. Phys. 117 10269

    Article  CAS  Google Scholar 

  40. Jiang Q and Yang C C 2008 Curr. Nanosci. 4 179

    Article  CAS  Google Scholar 

  41. Sargent-Welch Scientific Company Skokie: Illinois 1980 Table of Periodic properties of the elements p 1

  42. Yang C C, Li G and Jiang Q 2003 J. Phys. Condens. Matter 15 49619

    Google Scholar 

  43. Yang C C, Li G and Jiang Q 2003 Solid State Commun. 129 437

    Article  CAS  Google Scholar 

  44. Magomedov M N 2019 J. Phys. Conf. Ser. 1348 012013

    Article  CAS  Google Scholar 

  45. Qader I N, Abdulla B J and Omar M S 2020 Aksaray Univ. J. Sci. Eng. 4 30

    Google Scholar 

Download references

Acknowledgements

This work is part of a PhD research program supervised by Prof. M.S. Omer in the Department of Physics, College of Science at Salahaddin University-Erbil, Kurdistan region, Iraq. Their financial support is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Hamarashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamarashid, M.M., Omar, M.S. Hydrostatic pressure effects on the processes of lattice thermal conductivity of bulk Silicon and nanowires. Bull Mater Sci 44, 201 (2021). https://doi.org/10.1007/s12034-021-02467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02467-6

Keywords

Navigation