Skip to main content
Log in

Electrocatalytic oxidation of hydrazine at sulphur-doped graphene-modified glassy carbon electrode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, binder-free, stable, high-performance and ultrasensitive platform is proposed for the accurate estimation of hydrazine by using a facile synthesized few-layered sulphur-doped graphene (SG)-modified glassy carbon electrode (SG/GCE). This proposed SG/GCE facilitates hydrazine to be catalytically oxidized at low overpotential. The SG was synthesized by a facile microwave-assisted solvothermal route, further examined by electron microscopy, Raman and FTIR spectroscopy and identified as a suitable catalyst material for sensing platform. Experiments were conducted to typify the electrode as a sensor for the estimation of hydrazine. The SG-modified electrode exhibited overpotential of hydrazine oxidation at 0.31 V, which is lower than many other electrochemical sensors. The linear calibration plots were obtained over the range of 0.5–6 µM in chronoamperometry and the limit of detection is as low as 0.25 μM. It is one of the finest reports in terms of high sensitivity and low limit of detection has also been achieved. It is concluded that SG exhibited an efficient sensor platform for hydrazine determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Amlathe S and Gupta V K 1988 Analyst 113 1481

    Article  CAS  Google Scholar 

  2. Hatamie A, Angizi S, Kumar S, Pandey C M, Simchi A, Willander M et al 2020 J. Electrochem. Soc. 167 037546

    Article  CAS  Google Scholar 

  3. Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G et al 2020 Anal. Chim. Acta 1106 1

    Article  CAS  Google Scholar 

  4. Yamada K, Yasuda K, Fujiwara N, Siroma Z, Tanaka H, Miyazaki Y et al 2003 Electrochem. Commun. 5 892

    Article  CAS  Google Scholar 

  5. Poso A, Wright A V and Gynther J 1994 Mutat. Res. 332 63

    Article  Google Scholar 

  6. Ahmad R, Tripathy N, Ahn M S and Hahn Y B 2017 J. Colloid Interface Sci. 494 153

    Article  CAS  Google Scholar 

  7. Nickel U, Castell A Z, Pöppl K and Schneider S 2000 Langmuir 16 9087

    Article  CAS  Google Scholar 

  8. Fletcher P, Andrew K N, Calokerinos A C, Forbes S and Worsfold P J 2001 Luminescence 16 1

    Article  CAS  Google Scholar 

  9. Safavi A and Ensa A A 1995 Anal. Chim. Acta 300 307

    Article  CAS  Google Scholar 

  10. Mo J W, Ogorevc B, Zhang B and Pihlar X B 2000 Electroanalysis 12 48

    Article  CAS  Google Scholar 

  11. Rahman M M and Asiri A M 2015 Sens. Actuators B Chem. 214 82

    Article  CAS  Google Scholar 

  12. Mutyala S, Suresh C and Mathiyarasu J 2020 SN Appl. Sci. 2 1231

    Article  CAS  Google Scholar 

  13. Wang G F, Gu A X, Wang W, Wei Y, Wu J J, Wang G Z et al 2009 Electrochem. Commun. 11 631

    Article  CAS  Google Scholar 

  14. Mutyala S and Mathiyarasu J 2015 Sens. Actuators B Chem. 210 692

    Article  CAS  Google Scholar 

  15. Harraz F A, Ismail A A, Al-Sayari S A, Al-Hajry A and Al-Assiri M S 2016 Sens. Actuators B Chem. 234 573

    Article  CAS  Google Scholar 

  16. Kim S P and Choi H C 2015 Sens. Actuators B Chem. 207 424

    Article  CAS  Google Scholar 

  17. Shukla S, Chaudhary S, Umar A, Chaudhary G R and Mehta S K 2014 Sens. Actuators B Chem. 196 231

    Article  CAS  Google Scholar 

  18. He Y, Huang W, Liang Y and Yu H 2015 Sens. Actuators B Chem. 220 927

    Article  CAS  Google Scholar 

  19. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K et al 2010 Microchim. Acta 169 1

    Article  Google Scholar 

  20. Mutyala S and Mathiyarasu J 2015 Sens. Actuators B 210 692

    Article  CAS  Google Scholar 

  21. Taghaddosi S, Rezaee S and Shahrokhian S 2020 J. Electroanal. Chem. 873 114437

  22. Mohiuddin A K, Ahmed M S, Roy N and Jeon S 2021 Appl. Surf. Sci. 540 148346

  23. Wang Y, Wan Y and Zhan D 2010 Electrochem. Commun. 12 187

    Article  CAS  Google Scholar 

  24. Geim A K and Novoselov K S 2007 Nat. Mater. 6 652

    Article  Google Scholar 

  25. Wang H, Maiyalagan T and Wang X 2012 ACS Catal. 2 781

    Article  CAS  Google Scholar 

  26. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z et al 2011 ACS Nano 6 205

    Article  CAS  Google Scholar 

  27. Yang S, Zhi L, Tang K, Feng X, Maier J and Müllen K 2012 Adv. Funct. Mater. 22 3634

    Article  CAS  Google Scholar 

  28. Ma Z, Dou S, Shen A, Tao L, Dai L and Wang S 2015 Angew. Chem. Int. 54 1888

    Article  CAS  Google Scholar 

  29. Liu S, Tian J, Wang L and Sun X 2011 J. Nanopart. Res. 13 4539

    Article  CAS  Google Scholar 

  30. Li D, Müller M B, Gilje S, Kaner R B and Wallace C G 2008 Nat. Nanotechnol. 3 101

  31. Li X, Wang H, Robinson J T, Sanchez H, Diankov G and Dai H 2009 J. Am. Chem. Soc. 131 15939

    Article  CAS  Google Scholar 

  32. You J M, Ahmed M S, Han H S, Choe J, Üstünd Z and Jeon S 2015 J. Power Sources 275 73

    Article  CAS  Google Scholar 

  33. Afkhami A, Khoshsafar H, Bagheri H and Madrakian T 2014 Sens. Actuators B Chem. 203 909

    Article  CAS  Google Scholar 

  34. Kamyabi M A, Narimani O and Monfared H H 2010 J. Electroanal. Chem. 644 67

    Article  CAS  Google Scholar 

  35. Sims M J, Rees N V, Dickinson E J F and Compton R G 2010 Sens. Actuators B Chem. 144 153

    Article  CAS  Google Scholar 

  36. Henstridge M C, Dickinson E J F, Aslanoglu M, McAuley C B and Compton R G 2010 Sens. Actuators B Chem. 145 417

    Article  CAS  Google Scholar 

  37. Fang B, Feng Y, Liu M, Wang G, Zhang X and Wang M 2011 Microchim. Acta 175 145

    Article  CAS  Google Scholar 

  38. Zare H R and Nasirizadeh N 2007 Electrochim. Acta 52 4153

    Article  CAS  Google Scholar 

  39. Razmi H, Azadbakht A and Hossaini-Sadr M 2005 Anal. Sci. 21 1317

    Article  CAS  Google Scholar 

  40. Fang B, Zhang C, Zhang W and Wang G 2009 Electrochim. Acta 55 178

    Article  CAS  Google Scholar 

  41. Kamyabi M A, Narimani O and Monfared H H 2010 J. Electroanal. Chem. 67 644

    Google Scholar 

Download references

Acknowledgement

KS greatly acknowledges Dr R Ramesh Raju, Assistant Professor, Department of Chemistry, Acharya Nagarjuna University, Andhra Pradesh. for his constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Saritha rani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saritha rani, K., Mutyala, S. & Reddy, S.M. Electrocatalytic oxidation of hydrazine at sulphur-doped graphene-modified glassy carbon electrode. Bull Mater Sci 44, 204 (2021). https://doi.org/10.1007/s12034-021-02498-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02498-z

Keywords

Navigation