Skip to main content
Log in

Enhancing the absorption of 1-chloro-1,2,2,2-tetrafluoroethane on carbon nanotubes: an ab initio study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated the possibility of utilizing various single-walled pristine and doped carbon nanotubes as adsorbents for the 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) gaseous molecule. Three candidates, including pristine carbon nanotube (CNT), silicon carbide nanotube (SiCNT) and germanium-doped SiCNT (SiCGeNT) are identified and evaluated theoretically. The quantum simulations have been performed at the density functional theory (DFT) level with four different functionals (i.e., M06-2X, ωB97XD, CAM-B3LYP and B3LYP-D3) with a split-valence triple-zeta basis set (6-311G(d)). We found that adsorption on the SiCGeNT is most favourable, while that on the pristine CNT yields the lowest adsorption energy. Adsorption on these nanotubes is not accompanied by an active charge-transfer phenomenon; instead, it is driven by weak van der Waals forces. The HOMO–LUMO energy gaps drastically change when the dopant atom is added to the SiCNT, thereby improving their overall adsorption capability. Among all of the adsorbents investigated here, SiCGeNT shows the most favourable for designing effective HCFC-124 nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fang X, Yao B, Vollmer M, Reimann S, Liu L, Chen L et al 2019 Geophys. Res. Lett. 46 10034

    Article  CAS  Google Scholar 

  2. Secretariat UNEPO 2006 Handbook for the Montreal protocol on substances that deplete the ozone layer: UNEP/Earthprint

  3. Fahey D, Newman P A, Pyle J A, Safari B, Chipperfield M P, Karoly D et al 2018 Scientific assessment of ozone depletion: 2018, global ozone research and monitoring project—Report no. 58 (Geneva, Switzerland: World Meteorological Organization)

  4. Solomon S, Manning M, Marquis M and Qin D 2007 Climate change 2007: the physical science basis: working group I contribution to the fourth assessment report of the IPCC (New York, USA: Cambridge University Press)

  5. Fahey D W and Hegglin M I 2011 Scientific assessment of ozone depletion: 2010, global ozone research and monitoring project—Report no. 52 (Geneva, Switzerland: World Meteorological Organization)

  6. Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J et al 2013 Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (United Kingdom and New York, USA: Cambridge University Press)

  7. Mohammadi M D and Hamzehloo M 2018 Comput. Theor. Chem. 1144 26

    CAS  Google Scholar 

  8. Nemati-Kande E, Abbasi M and Mohammadi M D 2019 ChemistrySelect 4 2453

    Article  CAS  Google Scholar 

  9. Doust Mohammadi M and Abdullah H Y 2020 ChemistrySelect 5 12115

    Article  CAS  Google Scholar 

  10. Mohammadi M D and Abdullah H Y 2020 J. Mol. Model. 26 1

    Article  CAS  Google Scholar 

  11. Mohammadi M D and Abdullah H Y 2020 Theor. Chem. Acc. 139 1

    Article  CAS  Google Scholar 

  12. Mohammadi M D and Abdullah H Y 2020 Struct. Chem. 32 481

  13. Mohammadi M D, Salih I H and Abdullah H Y 2020 Mol. Simul. 46 1405

    Article  CAS  Google Scholar 

  14. Mohammadi M D, Salih I H and Abdullah H Y 2020 J. Comput. Biophys. Chem. 20 23

  15. Nemati-Kande E, Abbasi M and Mohammadi M D 2020 J. Mol. Struct. 1199 126962

    Article  CAS  Google Scholar 

  16. Mohammadi M D and Abdullah H Y 2021 Comput. Theor. Chem. 1193 113047

    CAS  Google Scholar 

  17. Mohammadi M D, Abdullah H Y, Bhowmick S and Biskos G 2021 Comput. Theor. Chem. 1198 113168

  18. Wilke K and Breuer H 1999 J. Photochem. Photobiol. A: Chem. 121 49

    Article  CAS  Google Scholar 

  19. Saha D and Deng S 2009 Langmuir 25 12550

    Article  CAS  Google Scholar 

  20. Botas J A, Calleja G, Sánchez-Sánchez M and Orcajo M G 2010 Langmuir 26 5300

    Article  CAS  Google Scholar 

  21. Wang L-Q, Baer D R, Engelhard M H and Shultz A N 1995 Surf. Sci. 344 237

    Article  CAS  Google Scholar 

  22. Bolton K 2003 J. Mol. Struct.: Theochem. 632 145

    Article  CAS  Google Scholar 

  23. Wu Z, Li M, Howe J, Meyer III H M and Overbury S H 2010 Langmuir 26 16595

    Article  CAS  Google Scholar 

  24. Yildirim T, Íñiguez J and Ciraci S 2005 Phy.s Rev. B 72 153403

  25. Srinivasu K and Ghosh S K 2012 J. Phys. Chem. C 116 25184

    Article  CAS  Google Scholar 

  26. Lin S, Ye X, Johnson R S and Guo H 2013 J. Phys. Chem. C 117 17319

    Article  CAS  Google Scholar 

  27. Darwish A A, Fadlallah M M, Badawi A and Maarouf A A 2016 Appl. Surf. Sci. 377 9

    Article  CAS  Google Scholar 

  28. Seif A and Azizi K 2016 RSC Adv. 6 5079

    Article  CAS  Google Scholar 

  29. Seif A and Azizi K 2016 RSC Adv. 6 58458

    Article  CAS  Google Scholar 

  30. Esrafili M D and Asadollahi S 2018 J. Mol. Graph. Model. 85 323

    Article  CAS  Google Scholar 

  31. Lei W, Zhang H, Wu Y, Zhang B, Liu D, Qin S et al 2014 Nano Energy 6 219

    Article  CAS  Google Scholar 

  32. Hjiri M, El Mir L, Leonardi S, Pistone A, Mavilia L and Neri G 2014 Sens. Actuators B: Chem. 196 413

    Article  CAS  Google Scholar 

  33. Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864

    Article  Google Scholar 

  34. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  35. Pople J A, Gill P M and Johnson B G 1992 Chem. Phys. Lett. 199 557

    Article  CAS  Google Scholar 

  36. Bickelhaupt F M and Baerends E J 2000 Rev. Comput. Chem. 15 1

    CAS  Google Scholar 

  37. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  CAS  Google Scholar 

  38. Chai J-D and Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615

    Article  CAS  Google Scholar 

  39. Grimme S 2006 J. Comput. Chem. 27 1787

    Article  CAS  Google Scholar 

  40. Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104

    Article  CAS  Google Scholar 

  41. Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456

    Article  CAS  Google Scholar 

  42. Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51

    Article  CAS  Google Scholar 

  43. Kobayashi R and Amos R D 2006 Chem. Phys. Lett. 420 106

    Article  CAS  Google Scholar 

  44. Goerigk L and Grimme S 2011 Phys. Chem. Chem. Phys. 13 6670

    Article  CAS  Google Scholar 

  45. Ibach H and Lüth H 1995 Solid state and physics (Berlin: Springer) p 244

  46. Baker J 1987 J. Comput. Chem. 8 563

    Article  CAS  Google Scholar 

  47. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al 2016 Gaussian 16 (Wallingford, CT: Gaussian, Inc.)

    Google Scholar 

  48. Lu T and Chen F 2012 J. Comput. Chem. 33 580

    Article  CAS  Google Scholar 

  49. O’Boyle N M, Tenderholt A L and Langner K M 2008 J. Comput. Chem. 29 839

    Article  CAS  Google Scholar 

  50. Boys S F and Bernardi F 1970 Mol. Phys. 19 553

    Article  CAS  Google Scholar 

  51. Alkorta I, Trujillo C, Elguero J and Solimannejad M 2011 Comput. Theor. Chem. 967 147

    Article  CAS  Google Scholar 

  52. Bredas J-L 2014 Mater. Horiz. 1 17

    Article  CAS  Google Scholar 

  53. Foster A J and Weinhold F 1980 J. Am. Chem. Soc. 102 7211

    Article  CAS  Google Scholar 

  54. Weinhold F and Landis C R 2001 Chem. Educ. Res. Pract. 2 91

    Article  CAS  Google Scholar 

  55. Weinhold F and Landis C R 2012 Discovering chemistry with natural bond orbitals (New Jersey, USA: John Wiley & Sons Inc.)

  56. Mulliken R S 1955 J. Chem. Phys. 23 1833

    Article  CAS  Google Scholar 

  57. Mayer I 1983 Chem. Phys. Lett. 97 270

    Article  CAS  Google Scholar 

  58. Bridgeman A J, Cavigliasso G, Ireland L R and Rothery J 2001 J. Chem. Soc. Dalton Trans. 14 2095

  59. Mayer I 2012 Chem. Phys. Lett. 544 83

    Article  CAS  Google Scholar 

  60. Wiberg K B 1968 Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  61. Sizova O V, Skripnikov L V and Sokolov A Y 2008 J. Mol. Struct.: Theochem. 870 1

    Article  CAS  Google Scholar 

  62. Matta C F 2006 Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydro. Hydrogen bonding—new insights (AA Dordrecht, The Netherlands: Springer) p 337

  63. Bohórquez H J, Boyd R J and Matta C F 2011 J. Phys. Chem. A 115 12991

    Article  CAS  Google Scholar 

  64. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498

    Article  CAS  Google Scholar 

  65. Contreras-García J, Johnson E R, Keinan S, Chaudret R, Piquemal J-P, Beratan D N et al 2011 J. Chem. Theory Comput. 7 625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HYA thanks the Solid-State Theory Group, Physics Department, Università degli Studi di Milano, Milan, Italy, for providing computational facilities. SB and GB acknowledge the support of the European Regional Development Fund and the Republic of Cyprus through the Research Innovation Foundation (Cy-Tera project under the grant NEA YPODOMH/STPATH/0308/31, and NANO2LAB project under the grant INFRASTRUCTURES/1216/0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HEWA Y ABDULLAH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MOHAMMADI, M.D., ABDULLAH, H.Y., BISKOS, G. et al. Enhancing the absorption of 1-chloro-1,2,2,2-tetrafluoroethane on carbon nanotubes: an ab initio study. Bull Mater Sci 44, 198 (2021). https://doi.org/10.1007/s12034-021-02472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02472-9

Keywords

Navigation