Skip to main content

Advertisement

Log in

Investigating the bioenergy potential of invasive Reed Canary (Phalaris arundinacea) through thermal and kinetic analyses

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2021

This article has been updated

Abstract

The thermal conversion of biomass plays an important role in the development of energy reaping technologies and fire engineering. The study investigates the bioenergy potential of Reed Canary (Phalaris arundinacea) through investigating the combustion kinetics and thermal behavior. Reed Canary samples were collected from various rural areas of Ontario, Canada. Four heating rates (10, 20, 30, and 40 °C min−1) were utilized to perform the thermal degradation analysis using a thermogravimetric analyzer. Three different stages were identified ranging from 25 °C to 800 °C in which major degradation stage had two regions from 210 °C to 530 °C where most of the biomass changed into products. Furthermore, iso-conversional models including Kissenger-Akahira-Sunose (KSA), Starink and Flynn–Wall–Ozawa (FWO) were used to evaluate the reaction kinetics such as the activation energy and the pre-exponential factor. The reported kinetics parameters demonstrate the promising potential of Reed Canary for bioenergy production. Moreover, the low cost and the abundance of Reed Canary facilitate the possibility of introducing the biomass as a cost efficient and environmentally friendly natural resource for renewable bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Smith DJ, Current D, Schulman C, Easter KW (2018) Willingness to produce perennial bioenergy crops: a contingent supply approach. Biomass Bioenerg 117:161–172

    Article  Google Scholar 

  2. Sparrevik M, Field JL, Martinsen V, et al (2013) Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environ Sci \& Technol 47:1206–1215

  3. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  4. Al-Hamamre Z, Saidan M, Hararah M et al (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sustain Energy Rev 67:295–314

    Article  Google Scholar 

  5. Uddin MN, Taweekun J, Techato K et al (2019) Sustainable biomass as an alternative energy source: Bangladesh perspective. Energy Procedia 160:648–654

    Article  Google Scholar 

  6. Galanopoulos C, Yan J, Li H, Liu L (2018) Impacts of acidic gas components on combustion of contaminated biomass fuels. Biomass Bioenerg 111:263–277

    Article  Google Scholar 

  7. Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda. Biotechnol Biofuels 10:11. https://doi.org/10.1186/s13068-016-0689-5

    Article  Google Scholar 

  8. Asadi A, Zhang Y, Mohammadi H et al (2019) Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: a CFD study. Renew Energy 138:79–89

    Article  Google Scholar 

  9. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004

    Article  Google Scholar 

  10. Liu G, Liao Y, Guo S et al (2016) Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Appl Therm Eng 98:400–408

    Article  Google Scholar 

  11. Kalogirou SA (2003) Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 29:515–566. https://doi.org/10.1016/S0360-1285(03)00058-3

    Article  Google Scholar 

  12. Boubacar Laougé Z, Merdun H (2020) Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresour Technol 299:122602. https://doi.org/10.1016/j.biortech.2019.122602

  13. Boubacar Laougé Z, Merdun H (2020) Kinetic analysis of Pearl Millet (Penissetum glaucum (L.) R. Br.) under pyrolysis and combustion to investigate its bioenergy potential. Fuel 267:117172. https://doi.org/10.1016/j.fuel.2020.117172

  14. Xu X, Pan R, Chen R (2021) Combustion characteristics, kinetics, and thermodynamics of pine wood through thermogravimetric analysis. Appl Biochem Biotechnol 1–20

  15. Gupta S, Gupta GK, Mondal MK (2020) Thermal degradation characteristics, kinetics, thermodynamic, and reaction mechanism analysis of pistachio shell pyrolysis for its bioenergy potential. Biomass Convers Biorefinery 1–15

  16. Akahira T, Sunose T (1969) Transactions of Joint Convention of Four Electrical Institutes. 246

  17. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  Google Scholar 

  18. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Lett 4:323–328

    Article  Google Scholar 

  19. Starink MJ (2003) The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta 404:163–176

    Article  Google Scholar 

  20. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  Google Scholar 

  21. Vyazovkin S, Chrissafis K, Di Lorenzo ML et al (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  Google Scholar 

  22. Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A 104:10777–10782. https://doi.org/10.1021/jp0022205

    Article  Google Scholar 

  23. Machado JC, Carneiro PCS, da Costa CJ et al (2017) Elephant grass ecotypes for bioenergy production via direct combustion of biomass. Ind Crops Prod 95:27–32

    Article  Google Scholar 

  24. Paniagua S, Prado-Guerra A, García AI, Calvo LF (2019) Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes. Biomass Convers Biorefinery 9:749–760. https://doi.org/10.1007/s13399-019-00392-7

    Article  Google Scholar 

  25. Nhuchhen DR, Salam PA (2012) Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel 99:55–63

    Article  Google Scholar 

  26. Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493

    Article  Google Scholar 

  27. Braga RM, Melo DMA, Aquino FM et al (2014) Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim 115:1915–1920

    Article  Google Scholar 

  28. Biney PO, Gyamerah M, Shen J, Menezes B (2015) Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model. Bioresour Technol 179:113–122

    Article  Google Scholar 

  29. Maia AAD, de Morais LC (2016) Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour Technol 204:157–163

    Article  Google Scholar 

  30. Mehmood MA, Ye G, Luo H et al (2017) Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol 228:18–24

    Article  Google Scholar 

  31. Ahmad MS, Mehmood MA, Al Ayed OS et al (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713

    Article  Google Scholar 

  32. Huang L, Liu J, He Y et al (2016) Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO 2/O 2 atmosphere as biomass to solid biofuel. Bioresour Technol 218:631–642

    Article  Google Scholar 

  33. Niu H, Liu N (2015) Thermal decomposition of pine branch: unified kinetic model on pyrolytic reactions in pyrolysis and combustion. Fuel 160:339–345

    Article  Google Scholar 

  34. Ding Y, Huang B, Wu C et al (2019) Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis. Energy 181:11–17

    Article  Google Scholar 

  35. Zou H, Evrendilek F, Liu J, Buyukada M (2019) Combustion behaviors of pileus and stipe parts of Lentinus edodes using thermogravimetric-mass spectrometry and Fourier transform infrared spectroscopy analyses: thermal conversion, kinetic, thermodynamic, gas emission and optimization analyses. Bioresour Technol 288:121481

  36. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT (2008) Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett 2:133–146

    Article  Google Scholar 

  37. Ahmad MS, Mehmood MA, Ye G et al (2017) Thermogravimetric analyses revealed the bioenergy potential of Eulaliopsis binata. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6398-x

    Article  Google Scholar 

  38. Wu W, Mei Y, Zhang L et al (2015) Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel 156:71–80

    Article  Google Scholar 

  39. Chen R, Li Q, Xu X, et al (2020) Combustion characteristics, kinetics and thermodynamics of Pinus Sylvestris pine needle via non-isothermal thermogravimetry coupled with model-free and model-fitting methods. Case Stud Therm Eng 22:100756

  40. Rathore NS, Pawar A, Panwar NL (2021) Kinetic analysis and thermal degradation study on wheat straw and its biochar from vacuum pyrolysis under non-isothermal condition. Biomass Convers Biorefinery 1–13

  41. Yaras A, Demirel B, Akkurt F, Arslanoglu H (2021) Thermal conversion behavior of paper mill sludge: characterization, kinetic, and thermodynamic analyses. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01232-9

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-5-135-41). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Elkamel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhumade, H., Ahmad, M.S., Mauri, E. et al. Investigating the bioenergy potential of invasive Reed Canary (Phalaris arundinacea) through thermal and kinetic analyses. Biomass Conv. Bioref. 13, 7677–7685 (2023). https://doi.org/10.1007/s13399-021-01664-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01664-x

Keywords

Navigation