Skip to main content

Advertisement

Log in

Temperature Dependence of Specific Heat of Human Enamel and Dentin: An Experimental Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Knowledge about the thermal properties of human teeth is imperative for accurate understanding of heat transfer in dentistry. Despite the presence of specific heat in thermal conduction and heat transfer equations, and requiring this parameter for calculation of conductivity based on diffusivity, adequate attention has not been paid to experimental assessment of specific heat of the human enamel and dentin. Specific heat can be a temperature-dependent property. Thus, this study aimed to assess the specific heat of the human enamel, sound dentin, and carious dentin at 20 °C to 70 °C temperature (which is the realizable temperature range in dental procedures) using the differential scanning calorimetry (DSC). The results showed that the specific heat of the enamel, sound dentin and carious dentin increased with temperature rise. The specific heat of the enamel, sound dentin and carious dentin at 20 °C to 70 °C ranged from 709 J·kg−1·K−1 to 921 J·kg−1·K−1, 880 J·kg−1·K−1 to 1139 J·kg−1·K−1 and 951 J·kg−1·K−1 to 1311 J·kg−1·K−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zach, G. Cohen, Pulp response to externally applied heat. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 19, 515–530 (1965)

    Article  Google Scholar 

  2. S.-J. Kwon et al., Thermal irritation of teeth during dental treatment procedures. Restor. Dentis. Endodont. 38, 105–112 (2013)

    Article  Google Scholar 

  3. V.R. Geraldo-Martins et al., Intrapulpal temperature during preparation with the Er: YAG laser: an in vitro study. Photomed. Laser Ther. 23, 182–186 (2005)

    Article  Google Scholar 

  4. D. Attrill et al., Thermal effects of the Er: YAG laser on a simulated dental pulp: a quantitative evaluation of the effects of a water spray. J. Dent. 32, 35–40 (2004)

    Article  Google Scholar 

  5. M. Hannig, B. Bott, In-vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. Dental Mater. 15, 275–281 (1999)

    Article  Google Scholar 

  6. D. Hussey, P. Biagioni, P.-J. Lamey, Thermographic measurement of temperature change during resin composite polymerization in vivo. J. Dent. 23, 267–271 (1995)

    Article  Google Scholar 

  7. M. Daronch et al., Effect of composite temperature on in vitro intrapulpal temperature rise. Dental Mater 23, 1283–1288 (2007)

    Article  Google Scholar 

  8. B.N. Cavalcanti, C. Otani, S.M. Rode, High-speed cavity preparation techniques with different water flows. J. Prosthet. Dent. 87, 158–161 (2002)

    Article  Google Scholar 

  9. B.N. Cavalcanti, J.L. Lage-Marques, S.M. Rode, Pulpal temperature increases with Er: YAG laser and high-speed handpieces. J. Prosthet. Dent. 90, 447–451 (2003)

    Article  Google Scholar 

  10. W. Brown, H. Jacobs, R. Thompson, Thermal fatigue in teeth. J. Dent. Res. 51, 461–467 (1972)

    Article  Google Scholar 

  11. W. Brown, W. Dewey, H. Jacobs, Thermal properties of teeth. J. Dent. Res. 49, 752–755 (1970)

    Article  Google Scholar 

  12. J.C. Chato, Reflections on the history of heat and mass transfer in bioengineering. J. Biomech. Eng. 103, 97 (1981)

    Article  ADS  Google Scholar 

  13. A. Lakhssassi, E. Kengne, H. Semmaoui, Modifed pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat. Sci. 2, 1375 (2010)

    Google Scholar 

  14. C.L. Darling, G. Huynh, D. Fried, Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J. Biomed. Optics 11, 034023 (2006)

    Article  ADS  Google Scholar 

  15. M.F. de Magalhaes et al., Measurement of thermophysical properties of human dentin: effect of open porosity. J. Dent. 36, 588–594 (2008)

    Article  Google Scholar 

  16. H.H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Article  ADS  Google Scholar 

  17. A. Soori, F. Kowsary, S. Kasraei, Experimental estimation of the emissivity of human enamel and dentin. Infrared Phys. Technol. 106, 103234 (2020)

    Article  Google Scholar 

  18. M. Lin et al., A new method for characterization of thermal properties of human enamel and dentine: influence of microstructure. Infrared Phys. Technol. 53, 457–463 (2010)

    Article  ADS  Google Scholar 

  19. Lin, M., et al. In vitro investigation of heat transfer in human tooth, in Fourth International Conference on Experimental Mechanics, International Society for Optics and Photonics, 2010.

  20. P. Lancaster et al., In-vitro thermal maps to characterize human dental enamel and dentin. Front. Physiol. 8, 461 (2017)

    Article  Google Scholar 

  21. P.A. Little et al., Thermal conductivity through various restorative lining materials. J. Dent. 33, 585–591 (2005)

    Article  Google Scholar 

  22. A. Panas et al., Investigation of the thermal diffusivity of human tooth hard tissue. Int. J. Thermophys. 24, 837–848 (2003)

    Article  Google Scholar 

  23. M. Braden, Heat conduction in teeth and the effect of lining materials. J. Dent. Res. 43, 315–322 (1964)

    Article  Google Scholar 

  24. R. Craig, F. Peyton, Thermal conductivity of tooth structure, dental cements, and amalgam. J. Dent. Res. 40, 411–418 (1961)

    Article  Google Scholar 

  25. V. Lisanti, H. Zander, Thermal conductivity of dentin. J. Dent. Res. 29, 493–497 (1950)

    Article  Google Scholar 

  26. F. Peyton, W. Simeral, Specific heat of tooth structure. Alum. Bull. Univ. Michig. Dental Sch. 56, 9 (1954)

    Google Scholar 

  27. Calderón, A., et al. Thermal diffusivity in bone and hydroxyapatite, in AIP Conference Proceedings, AIP, 2004.

  28. H. Chen, A. Gundjian, Specific heat of bone. Med. Biol. Eng. 14, 548–550 (1976)

    Article  Google Scholar 

  29. S. Biyikli, M.F. Modest, R. Tarr, Measurements of thermal properties for human femora. J. Biomed. Mater. Res. 20, 1335–1345 (1986)

    Article  Google Scholar 

  30. Standard, A., E1269–11. Test method for determining specific heat capacity by differential scanning calorimetry, 2011.

  31. E. Morîntale et al., Use of heat flows from DSC curve for calculation of specific heat of the solid materials. Phys. AUC 23, 89–94 (2013)

    Google Scholar 

  32. A. Harabor, P. Rotaru, N. Harabor, Thermal and spectral behavior of (Y, Eu) VO 4 powder. J. Therm. Anal. Calorim. 111, 1211–1219 (2013)

    Article  Google Scholar 

  33. S. Degeratu et al., Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J. Therm. Anal. Calorim. 111, 1255–1262 (2013)

    Article  Google Scholar 

  34. Cassel, R.B., How Tzero™ Technology Improves DSC Performance Part III: The Measurement of Specific Heat Capacity. TA Instruments Applications Brief TA299. KEYWORDS Modulated Differential Scanning Calorimetry, 2001.

  35. C. Quick et al., Measurement of specific heat capacity via fast scanning calorimetry—accuracy and loss corrections. Thermochim. Acta 677, 12–20 (2019)

    Article  ADS  Google Scholar 

  36. Y. He, D. Walsh, C. Shi, Fluoropolymer composite coating for condensing heat exchangers: characterization of the mechanical, tribological and thermal properties. Appl. Therm. Eng. 91, 387–398 (2015)

    Article  Google Scholar 

  37. Y. Liu, Y. Yang, Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material. Appl. Therm. Eng. 124, 533–538 (2017)

    Article  Google Scholar 

  38. R. Raud et al., Experimental study of the interactivity, specific heat, and latent heat of fusion of water based nanofluids. Appl. Therm. Eng. 117, 164–168 (2017)

    Article  Google Scholar 

  39. H. Zhao, F. Liu, H. Yang, Thermal properties of coarse RCA concrete at elevated temperatures. Appl. Therm. Eng. 140, 180–189 (2018)

    Article  Google Scholar 

  40. K. Uddin et al., Specific heat capacities of carbon-based adsorbents for adsorption heat pump application. Appl. Therm. Eng. 129, 117–126 (2018)

    Article  Google Scholar 

  41. M. Lin et al., A review of heat transfer in human tooth—experimental characterization and mathematical modeling. Dental Mater. 26, 501–513 (2010)

    Article  Google Scholar 

  42. D.A. Young et al., The American Dental Association caries classification system for clinical practice: a report of the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 146, 79–86 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Seyedeh Sareh Hendi, Associate Professor, Department of Operative Dentistry, Dental school, Hamadan University of Medical Sciences for all her invaluable help and advice throughout this research.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Kowsary.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soori, A., Kowsary, F. & Kasraei, S. Temperature Dependence of Specific Heat of Human Enamel and Dentin: An Experimental Study. Int J Thermophys 42, 134 (2021). https://doi.org/10.1007/s10765-021-02885-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02885-y

Keywords

Navigation