Skip to main content
Log in

The Role of Ryanodine and IP3-receptors in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical Neurons

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Tricyclic antidepressants, specifically amitriptyline (ATL) and desipramine (DES) are currently used to treat depression and chronic pain of various origins, in which NMDA receptor dysfunctions play an important role. The effect of therapeutic ATL concentrations on calcium-dependent desensitization of NMDA receptors, driven by the level of free calcium in the cytoplasm, is well documented. In addition, in cardiomyocytes, ATL and DES can cause calcium release into the cytoplasm from intracellular stores by opening inositol-3-phosphate receptor (IP3R) and/or ryanodine receptors (RyR) channels. This aspect of ATL and DES effects on neurons remains poorly understood. We studied the dependence of calcium responses to DES and ATL on the activation of IP3R and RyR in the endoplasmic reticulum (ER) and mitochondria of rat neocortical neurons in primary culture. Short-term (30 s) paired (at a 5-min interval) applications of 200 µM DES or 200 µM ATL elicited similar-magnitude calcium responses in cortical neurons. The use of RyR and IP3R antagonists showed that responses to ATL are blocked by the IP3R antagonist 2-APB (100 µM), while responses to DES are blocked by the RyR antagonist ryanodine (100 nM). Since the intracellular distribution of RyR and IP3R is non-homogenous, it can be assumed that DES and ATL stimulate calcium release from different calcium stores located either in different segments of the ER or in the ER and mitochondria. In addition, ATL and DES, being channel blockers of NMDA receptors, inhibited calcium entry from the extracellular space via activated NMDA receptors. Considering high DES and ATL concentrations (>100 µM) required for the stimulation of calcium release in neurons, it seems unlikely that such effects appear during their therapeutic action. However, the revealed specificity of DES and ATL for RyR and IP3R, respectively, can be used as a tool for experimental purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rico-Villademoros F, Slim M, Calandre EP (2015) Amitriptyline for the treatment of fibromyalgia: a comprehensive review. Expert Rev Neurother 15(10):1123–1150. https://doi.org/10.1586/14737175.2015.1091726

    Article  CAS  PubMed  Google Scholar 

  2. Obata H (2017) Analgesic Mechanisms of antidepressants for neuropathic pain. Int J Mol Sci 18(11):2483. https://doi.org/10.3390/ijms18112483

    Article  CAS  PubMed Central  Google Scholar 

  3. Russell JW, Zilliox LA (2014) Diabetic neuropathies. Peripheral Nervous System Disorders 1226–1240. https://doi.org/10.1212/01.CON.0000455884.29545.d2

  4. Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340 (2–3):249–258. https://doi.org/10.1016/s0014-2999(97)01393-9

    Article  CAS  PubMed  Google Scholar 

  5. Cusack B, Nelson A, Richelson E (1994) Binding of antidepressants to human brain receptors: focus on newer generation compounds. Psychopharmacology 114 (4):559–565. https://doi.org/10.1007/BF02244985

    Article  CAS  PubMed  Google Scholar 

  6. Appl H, Holzammer T, Dove S, Haen E, Strasser A, Seifert R. (2012) Interactions of recombinant human histamine H1, H2, H3, and H4 receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 385(2):145–170. https://doi.org/10.1007/s00210-011-0704-0

    Article  CAS  PubMed  Google Scholar 

  7. Tohda M, Urushihara H, Nomura Y. (1995) Inhibitory effects of antidepressants on NMDA-induced currents in Xenopus oocytes injected with rat brain RNA. Neurochem Internat 26(1):53–58. https://doi.org/10.1016/0197-0186(94)00101-y

    Article  CAS  Google Scholar 

  8. Barygin OI, Nagaeva EI, Tikhonov DB, Belinskaya DA, Vanchakova NP, Shestakova NN (2017) Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. Brain Res 1660:58–66. https://doi.org/10.1016/j.brainres.2017.01.028

    Article  CAS  PubMed  Google Scholar 

  9. Stepanenko YD, Boikov SI, Sibarov DA, Abushik PA, Vanchakova NP, Belinskaia D, Shestakova NN, Antonov SM (2019) Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Sci Rep 9(1):19454. https://doi.org/10.1038/s41598-019-56072-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lavoie PA, Beauchamp G, Elie R (1990) Tricyclic antidepressants inhibit voltage-dependent calcium channels and Na+-Ca2+ exchange in rat brain cortex synaptosomes. Can J Physiol Pharmacol 68: 1414–1418. https://doi.org/10.1139/y90-215

    Article  CAS  PubMed  Google Scholar 

  11. Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN (2019) Psychotropic drugs for the management of chronic pain and itch. Pharmaceuticals 12(2):99. https://doi.org/10.3390/ph12020099

    Article  CAS  PubMed Central  Google Scholar 

  12. Boikov SI, Sibarov DA, Antonov SM (2020) Ethanol inhibition of NMDA receptors in calcium-dependent and -independent modes. Biochem Biophys Res Commun 522(4):1046-1051. https://doi.org/10.1016/j.bbrc.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  13. Sibarov DA, Abushik PA, Poguzhelskaya EE, Bolshakov KV, Antonov SM (2015) Inhibition of plasma membrane Na/Ca-exchanger by KB-R7943 or lithium reveals its role in Ca-dependent N-methyl-D-aspartate receptor inactivation. J Pharmacol Exp Ther 355(3):484–495. https://doi.org/10.1124/jpet.115.227173

    Article  CAS  PubMed  Google Scholar 

  14. Sibarov DA, Poguzhelskaya EE, Antonov SM (2018) Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol. BMC Neurosci 19(1):73. https://doi.org/10.1186/s12868-018-0475-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janowsky DS, Byerley B (1984) Desipramine: an overview. J Clin Psychiatry 45(10 Pt 2):3–9. PMID: 6384207

    CAS  PubMed  Google Scholar 

  16. Sibarov DA, Antonov SM (2018) Calcium-dependent desensitization of NMDA receptors. Biochemistry (Mosc) 83(10):1173–1183. https://doi.org/10.1134/S0006297918100036

    Article  CAS  Google Scholar 

  17. Zima AV, Qin J, Fill M, Blatter LA (2008) Tricyclic antidepressant amitriptyline alters sarcoplasmic reticulum calcium handling in ventricular myocytes. Am J Physiol Heart Circ Physiol 295(5):H2008–H2016. https://doi.org/10.1152/ajpheart.00523.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joshi PG, Singh A, Ravichandra B (1999) High concentrations of tricyclic antidepressants increase intracellular Ca2+ in cultured neural cells. Neurochem Res 24:391–398. https://doi.org/10.1023/a:1020937717260

    Article  CAS  PubMed  Google Scholar 

  19. Chopra N, Laver D, Davies SS, Knollmann BC (2008) Amitriptyline activates cardiac ryanodine channels and causes spontaneous sarcoplasmic reticulum calcium release. Mol Pharmacol 75 (1):183-195. https://doi.org/10.1124/mol.108.051490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furuichi T, Kohda K, Miyawaki A, Mikoshiba K (1994) Intracellular channels. Curr Opin Neurobiol 4:294–303. https://doi.org/10.1016/0959-4388(94)90089-2

    Article  CAS  PubMed  Google Scholar 

  21. Mironova EV, Evstratova AA, Antonov SM (2007) A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods 163:1–8. https://doi.org/10.1016/j.jneumeth.2007.02.010

    Article  PubMed  Google Scholar 

  22. Han EB, Stevens CF (2009) Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation. Proc Natl Acad Sci USA 106:10817–10822. https://doi.org/10.1073/pnas.0903603106

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular Ca2+-release channels. Trends Pharmacol Sci 15:145–149. https://doi.org/10.1016/0165-6147(94)90074-4

    Article  CAS  PubMed  Google Scholar 

  24. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB,2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505. https://doi.org/10.1093/oxfordjournals.jbchem.a021780

    Article  CAS  PubMed  Google Scholar 

  25. Saleem H, Tovey SC, Molinski TF, Taylor CW (2014) Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor. Br J Pharmacol 171(13):3298–3312. https://doi.org/10.1111/bph.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palade P, Dettbam C, Brunder D, Stein P, Hals G (1989) Pharmacology of calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr 21:295–319. https://doi.org/10.1007/BF00812074

    Article  CAS  PubMed  Google Scholar 

  27. Bezprozvanny I, Ondrias K, Kaftan E, Stoyanovsky DA, Ehrlich BE (1993) Activation of the calcium release channel (ryanodine receptor) by heparin and other polyanions. Molec Biol Cell 4:347–352. https://doi.org/10.1091/mbc.4.3.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Missiaen L, Callewaert G, De Smedt H, Parys JB (2001) 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific Ca2+ leak from the non-mitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29 (2):111–116. https://doi.org/10.1054/ceca.2000.0163

    Article  CAS  PubMed  Google Scholar 

  29. Bilmen JG, Wootton LL, Godfrey RE, Smart OS, Michelangeli F (2002) Inhibition of SERCA Ca2+ pumps by 2-aminoethoxydiphenyl borate (2-APB). 2-APB reduces both Ca2+ binding and phosphoryl transfer from ATP, by interfering with the pathway leading to the Ca2+-binding sites. Eur J Biochem 269:3678–3687. https://doi.org/10.1046/j.1432-1033.2002.03060.x

    Article  CAS  PubMed  Google Scholar 

  30. Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K (2010) Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2+ entry via STIM proteins. Cell Calcium 47:1–10. https://doi.org/10.1016/j.ceca.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu M, Nishida A, Yamawaki S (1993) Forskolin and phorbol myristate acetate inhibit intracellular Ca2+ mobilization induced by amitriptyline and bradykinin in rat frontocortical neurons. J Neurochem 61(5):1748–1754. https://doi.org/10.1111/j.1471-4159.1993.tb09812.x

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  33. Ryskamp DA, Korban S, Zhemkov V, Kraskovskaya N, Bezprozvanny I (2019) Neuronal Sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases. Front Neurosci 13:862. https://doi.org/10.3389/fnins.2019.00862

    Article  PubMed  PubMed Central  Google Scholar 

  34. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279. https://doi.org/10.1152/physrev.00004.2004

    Article  CAS  PubMed  Google Scholar 

  35. Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Südhof TC, Deerinck TJ, Ellisman MH (1991) Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol 113(5):1145–1157. https://doi.org/10.1083/jcb.113.5.1145

    Article  CAS  PubMed  Google Scholar 

  36. Segal M, Vlachos A, Korkotian E (2010) The spine apparatus, synaptopodin, and dendritic spine plasticity. Neuroscientist 16:125–131. https://doi.org/10.1177/1073858409355829

    Article  CAS  PubMed  Google Scholar 

  37. Chen-Engerer HJ, Hartmann J, Karl RM, Yang J, Feske S, Konnerth A (2019) Two types of functionally distinct Ca2+ stores in hippocampal neurons. Nat Commun 10 (1):3223. https://doi.org/10.1038/s41467-019-11207-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisar Z (2005) Interactions between tricyclic antidepressants and phospholipid bilayer membranes. Gen Physiol Biophys 24 (2):161-80. PMID: 16118470

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant # 20-515-18008 Bolg_a) and budget funding within the State assignment to the Sechenov Institute of Evolutionary Physiology and Biochemistry (AAAA-A18-118012290427-7).

Author information

Authors and Affiliations

Authors

Contributions

Idea and experiment planning (D.A.S. and S.M.A.); experimental research (S.I.B. and T.V.K.); data processing (S.I.B. and D.A.S.); manuscript writing and editing (D.A.S. and S.M.A.)

Corresponding author

Correspondence to D. A. Sibarov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest in relation to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 629–640https://doi.org/10.31857/S086981392104004X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boikov, S.I., Sibarov, D.A., Karelina, T.V. et al. The Role of Ryanodine and IP3-receptors in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical Neurons. J Evol Biochem Phys 57, 694–703 (2021). https://doi.org/10.1134/S0022093021030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021030169

Keywords:

Navigation