Skip to main content
Log in

The Traits of Protein Metabolism in the Skeletal Muscle of Teleost Fish

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review summarizes the literature and our own experimental data on the features of the structure, function, and protein metabolism in skeletal muscles of teleost fish (Teleostei). Despite the conserved basic mechanisms of muscle growth (myogenesis) and degradation in vertebrates, fish are characterized by unique features related to their poikilothermy, indeterminate growth, and a special role of skeletal muscle as a depot of plastic and energy substrates. Fish skeletal muscles show high plasticity in terms of their ability to undergo substantial anabolic or catabolic changes in response to environmental variables, such as temperature, photoperiod, and food availability. Under optimal (anabolic) conditions, fish muscle tissue grows by hypertrophy and hyperplasia at an extremely high rate, while during the periods of high energy demand, including migration, starvation, and gonad maturation, catabolism of skeletal muscle proteins temporarily dominates. However, degradation of fish muscle tissue can be profound enough to exceed its regenerative capacity: both genetic programs and responses to exogenous signals of excessive strength and duration can be implemented via this scenario. An extreme and demonstrative example of the mobilization of muscle protein reserves and utilization of resulting amino acids for energy production and synthesis of stage-specific gonadal proteins are Pacific salmonids whose exhaustion during spawning is so great that results in their death. Fish myopathies and the potential of fish as objects for human disease modeling are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

Akt:

serine/threonine protein kinase B

AMPK:

5′-AMP-activated protein kinase

GH:

growth hormone

GHR:

growth hormone receptor

hsp:

heat shock protein

Igf:

insulin-like growth factor

Igfbp:

Igf-binding protein

Igf-1R:

insulin-like growth factor 1 receptor

MPC:

myogenic progenitor cell

MRF:

myogenic regulatory factor

Myhc:

myosin heavy chain

Mylc:

myosin light chain

myoD:

myoblast determination factor

myoG:

myogenin

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

Pi3K:

phosphatidylinositol 3-kinase

TGF-β:

transforming growth factor beta

TNFα:

tumor necrosis factor alpha

TOR:

target of rapamycin

TSC:

tuberous sclerosis complex

UPS:

ubiquitin-proteasome system

WGD:

whole-genome duplication

REFERENCES

  1. Mommsen TP (2001) Paradigms of growth in fish. Comp Biochem Physiol B 129:207-219. https://doi.org/10.1016/s1096-4959(01)00312-8

    Article  CAS  PubMed  Google Scholar 

  2. Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264. https://doi.org/10.1242/jeb.02153

    Article  CAS  PubMed  Google Scholar 

  3. Johnston IA, Bower NI, Macqueen DJ (2011) Growth and the regulation of myotomal muscle mass in teleost fish. J Exp Biol 214:1617-1628. https://doi.org/10.1242/jeb.038620

    Article  CAS  PubMed  Google Scholar 

  4. Valente LMP, Moutou KA, Conceicao LEC, Engrola S, Fernandes JMO, Johnston IA (2013) What determines growth potential and juvenile quality of farmed fish species? Rev Aquacult 5(Suppl 1):S168–S193. https://doi.org/10.1111/raq.12020

    Article  Google Scholar 

  5. Mommsen TP (2004) Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work. Comp Biochem Physiol B 139(3):383-400. https://doi.org/10.1016/j.cbpc.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  6. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univer Press, New York.

    Google Scholar 

  7. Garcia de la serrana D, Estévez A, Andree K, Johnston IA (2012) Fast skeletal muscle transcriptome of the Gilthead sea bream (Sparus aurata) determined by next generation sequencing. BMC Genomics 13:181. https://doi.org/10.1186/1471-2164-13-181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cleveland BM, Weber GM (2011) Effects of sex steroids on indices of protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle. Gen Comp Endocrinol 174:132–142.

    Article  CAS  PubMed  Google Scholar 

  9. Venugopal V, Shahidi F (1996) Structure and composition of fish muscle. Food Rev Int 12(2):175-197. https://doi.org/10.1080/87559129609541074

    Article  Google Scholar 

  10. Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B 281:20132881. https://doi.org/10.1098/rspb.2013.2881

    Article  PubMed  PubMed Central  Google Scholar 

  11. Macqueen DJ, Johnston IA (2006) A novel salmonid myoD gene is distinctly regulated during development and probably arose by duplication after the genome tetraploidization. FEBS Lett 580(21):4996–5002. https://doi.org/10.1016/j.febslet.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  12. Churova M, Shulgina N, Kuritsyn A, Krupnova M, Nemova N (2020) Muscle-specific gene expression and metabolic enzyme activities in Atlantic salmon Salmo salar L. fry reared under different photoperiod regimes. Comp Biochem Physiol B 239:110330. https://doi.org/10.1016/j.cbpb.2019.110330

    Article  CAS  PubMed  Google Scholar 

  13. Vélez EJ, Lutfi E, Azizi Sh, Perelló M, Salmerón C, Riera-Codina M, Ibarz A, Fernández-Borràs J, Blasco J, Capilla E, Navarro I, Gutiérrez J (2017) Understanding fish muscle growth regulation to optimize aquaculture production. Aquaculture 467:28-40. https://doi.org/10.1016/j.aquaculture.2016.07.004

    Article  Google Scholar 

  14. Vélez EJ, Lutfi E, Azizi Sh, Montserrat N, Riera-Codina M, Capilla E, Navarro I, Gutiérrez J (2016) Contribution of in vitro myocytes studies to understanding fish muscle physiology. Comp Biochem Physiol B. 199:67-73. https://doi.org/10.1016/j.cbpb.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Azizi Sh, Nematollahi MA, Mojazi Amiri B, Vélez EJ, Salmerón C, Chan SJ, Navarro I, Capilla E, Gutiérrez J (2016) IGF-I and IGF-II effects on local IGF system and signaling pathways in gilthead sea bream (Sparus aurata) cultured myocytes. Gen Comp Endocrinol 232:7-16. https://doi.org/10.1016/j.ygen.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  16. Caldwell LK, Pierce AL, Nagler JJ (2013) Metabolic endocrine factors involved in spawning recovery and rematuration of iteroparous female rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 194:124–132. https://doi.org/10.1016/j.ygcen.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  17. Steinbacher P, Marschallinger J, Obermayer A, Neuhofer A, Sänger AM, Stoiber W (2011) Temperature-dependent modification of muscle precursor cell behaviour is an underlying reason for lasting effects on muscle cellularity and body growth of teleost fish. J Exp Biol 214:1791–1801. https://doi.org/10.1242/jeb.050096

    Article  PubMed  Google Scholar 

  18. Rowlerson A, Veggetti A. (2001) Cellular mechanism of post-embyonic muscle growth in aquaculture species. In: Johnston IA, Hoar WS, Farrell AP (eds) Fish Physiology: Muscle development and growth, Vol. 18. Acad Press Inc 103-132.

    Chapter  Google Scholar 

  19. Froehlich JM, Fowler ZG, Galt NJ, Smith DL Jr, Biga PR (2013) Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 4:159. https://doi.org/10.3389/fgene.2013.00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koganti P, Yao J, Cleveland BM (2021) Molecular mechanisms regulating muscle plasticity in fish. Animals 11:61. https://doi.org/10.3390/ani11010061

    Article  Google Scholar 

  21. Gabillard J-C, Biga PR, Rescan P-Y, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: Insights from fishes. Gen Comp Endocrinol 194:45-54. https://doi.org/10.1016/j.ygcen.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  22. Johnston IA, Manthri S, Alderson R, Smart A, Campbell P, Nickell D, Robertson B, Paxton CG, Burt ML (2003) Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar). J Exp Biol 206:1337–1351. https://doi.org/10.1242/jeb.00262

    Article  PubMed  Google Scholar 

  23. Johnston IA, Lee HT, Macqueen DJ, Paranthaman K, Kawashima C, Anwar A, Kinghorn JR, Dalmay T (2009) Embryonic temperature affects muscle fibre recruitment in adult zebrafish: genome-wide changes in gene and microRNA expression associated with the transition from hyperplastic to hypertrophic growth phenotypes. J Exp Biol 212:1781–1793. https://doi.org/10.1242/jeb.029918

    Article  CAS  PubMed  Google Scholar 

  24. Hevrøy EM, Jordal A-EO, Hordvik I, Espe M, Hemre G-I, Olsvik PA (2006) Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture 252:453–461. https://doi.org/10.1016/j.aquaculture.2005.07.003

    Article  CAS  Google Scholar 

  25. Imsland AK, Le François NR, Lammare SG, Ditlecadet D, Sigurðsson S, Foss A (2011) Myosin expression levels and enzyme activity in juvenile spotted wolfish (Anarhichas minor) muscle: a method for monitoring growth rates. Can J Fish Aquat Sci 63:1959–1967. https://doi.org/10.1139/f06-091

    Article  Google Scholar 

  26. Peruzzi S, Puvanendran V, Riesen G, Seim RR, Hagen Ø, Martínez-Llorens S, Falk-Petersen I-B, Fernandes JMO, Jobling M (2018) Growth and development of skeletal anomalies in diploid and triploid Atlantic salmon (Salmo salar) fed phosphorus-rich diets with fish meal and hydrolyzed fish protein. PLoS One 13(3):e0194340. https://doi.org/10.1371/journal.pone.0194340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL (1992) Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Biotechnology (NY) 10(2):176-181. https://doi.org/10.1038/nbt0292-176

    Article  CAS  Google Scholar 

  28. Phelps MP, Jaffe IM, Bradley TM (2013) Muscle growth in teleost fish is regulated by factors utilizing the activin II B receptor. J Exp Biol 216:3742-3750. https://doi.org/10.1242/jeb.086660

    Article  CAS  PubMed  Google Scholar 

  29. Bassett D, Currie PD (2004) Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol 31(8):537-540. https://doi.org/10.1111/j.1440-1681.2004.04030.x

    Article  CAS  PubMed  Google Scholar 

  30. Spencer MJ, Tidball JG (1992) Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203:107–114. https://doi.org/10.1016/0014-4827(92)90045-a

    Article  CAS  PubMed  Google Scholar 

  31. Goll DE, Neti G, Mares SW, Thompson VF (2008) Myofibrillar protein turnover: the proteasome and the calpains. J Anim Sci 86:E19–Е35. https://doi.org/10.2527/jas.2007-0395

    Article  CAS  PubMed  Google Scholar 

  32. Nemova NN, Lysenko LA, Kantserova NP (2010) Proteases of the calpain family: structure and functions. Russ J Dev Biol 41(5):318-325. https://doi.org/10.1134/S1062360410050073

    Article  Google Scholar 

  33. Salmerón C, García de la serrana D, Jiménez-Amilburu V, Fontanillas R, Navarro I, Johnston IA, Gutiérrez J, Capilla E (2013) Characterisation and expression of calpain family members in relation to nutritional status, diet composition and flesh texture in gilthead sea bream (Sparus aurata). PLoS ONE 8(9):e75349. https://doi.org/10.1371/journal.pone.0075349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121-2129. https://doi.org/10.1016/j.biocel.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salem M, Kenney PB, Rexroad CE, Yao J (2006) Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout. Comp Biochem Physiol D 1(2):227-237. https://doi.org/10.1016/j.cbd.2005.12.003

    Article  CAS  Google Scholar 

  36. Seiliez I, Dias K, Cleveland BM (2014) Contribution of the autophagy-lysosomal and ubiquitin-proteasomal proteolytic systems to total proteolysis in rainbow trout (Oncorhynchus mykiss) myotubes. Am J Physiol Regul Integr Comp Physiol 307:R1330–R1337. https://doi.org/10.1152/ajpregu.00370.2014

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Klionsky DJ (2011) The regulation of autophagy – unanswered questions. J Cell Sci 124:161–170. https://doi.org/10.1242/jcs.064576

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen LB, Nielsen HH (2001) Purification and characterization of cathepsin D from herring muscle (Clupea harengus). Comp Biochem Physiol B 128:351-363. https://doi.org/10.1016/s1096-4959(00)00332-8

    Article  CAS  PubMed  Google Scholar 

  39. Seiliez I, Gabillard JC, Riflade M, Sadoul B, Dias K, Avérous J, Tesseraud S, Skiba S, Panserat S (2012) Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy 8:364–375. https://doi.org/10.4161/auto.18863

    Article  CAS  PubMed  Google Scholar 

  40. Ardley HC, Robinson PA (2005) E3 ubiquitin ligases. The ubiquitin-proteasome system. Essays Biochem 41:15–30. https://doi.org/10.1042/EB0410015

    Article  CAS  PubMed  Google Scholar 

  41. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39-51. https://doi.org/10.1096/fj.03-0610

    Article  CAS  PubMed  Google Scholar 

  42. Cleveland BM, Evenhuis JP (2010) Molecular characterization of atrogin-1/Fbox protein-32 (FBXO32) and F-box protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): expression across tissues in response to feed deprivation. Comp Biochem Physiol B 157:248–257. https://doi.org/10.1016/j.cbpb.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  43. Lui JC, Baron J (2011) Mechanisms limiting body growth in mammals. Endocr Rev 32(3):422-40. https://doi.org/10.1210/er.2011-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macqueen DJ, Robb D, Johnston IA (2007) Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salar L). J Exp Biol 210:2781–2794. https://doi.org/10.1242/jeb.006981

    Article  CAS  PubMed  Google Scholar 

  45. Johnston IA, Manthri S, Smart A, Campbell P, Nickell D, Alderson R (2003) Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. J Exp Biol 206:3425-3435. https://doi.org/10.1242/jeb.00577

    Article  PubMed  Google Scholar 

  46. Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV (2015) Dietary methionine level affects growth performance and hepatic gene expression of GH–IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B 181:33–41. https://doi.org/10.1016/j.cbpb.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  47. Buas MF, Kadesch T (2010) Regulation of skeletal myogenesis by Notch. Exp Cell Res 18:3028–3033. https://doi.org/10.1016/j.yexcr.2010.05.002

    Article  CAS  Google Scholar 

  48. Kantserova N. Lysenko L, Nemova N (2018) Relationship of growth rate and muscle protein turnover in Atlantic salmon Salmo salar L. under natural and artificial photoperiods. FEBS Open Bio. 8(Suppl 1):407. https://doi.org/10.1002/2211-5463.12453

    Article  Google Scholar 

  49. Imsland AKD, Roth B, Døskeland I, Fjelldal PG, Stefansson SO, Handeland S, Mikalsen B (2019) Flesh quality of Atlantic salmon smolts reared at different temperatures and photoperiods. Aquacult Res 1–7. https://doi.org/10.1111/are.14058

  50. Hermelink B, Wuertz S, Trubiroha A, Rennert B, Kloas W, Schulz C (2011) Influence of temperature on puberty and maturation of pikeperch, Sander lucioperca. Gen Comp Endocrinol 172:282–292. https://doi.org/10.1016/j.ygcen.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  51. Morro B, Balseiro P, Albalat A, Pedrosa C, Mackenzie S, Nakamura C, Shimizu M, Nilsen TO, Sveier H, Ebbesson LO, Handeland SO (2019) Effects of different photoperiod regimes on the smoltification and seawater adaptation of seawater-farmed rainbow trout (Oncorhynchus mykiss): Insights from Na+, K+–ATPase activity and transcription of osmoregulation and growth regulation genes. Aquaculture 507:282–292. https://doi.org/10.1016/j.aquaculture.2019.04.039

    Article  CAS  Google Scholar 

  52. McCormick SD, Björnsson BTh, Sheridan M, Eilertson C, Carey JB, O’Dea M (1995) Increased daylength stimulates plasma growth hormone and gill Na+, K+-ATPase in Atlantic salmon (Salmo salar). J Comp Physiol B 165:245–254.

    Article  CAS  Google Scholar 

  53. Kendall NW, McMillan JR, Sloat MR, Buehrens TW, Quinn TP, Pess GR, Kuzishchin KV, McClure MM, Zabel RW (2015) Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Can J Fish Aquat Sci 72(3):319–342. https://doi.org/10.1139/cjfas-2014-0192

    Article  CAS  Google Scholar 

  54. Kantserova NP, Lysenko LA, Veselov AE, Nemova NN (2017) Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L. Fish Physiol Biochem 43(4):1187-1194. https://doi.org/10.1007/s10695-017-0364-1

    Article  CAS  PubMed  Google Scholar 

  55. Lysenko LA, Kantserova NP, Kaivarainen HI, Krupnova MJ, Nemova NN (2017) Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon (Salmo salar L). Comp Biochem Physiol B 211:22-28. https://doi.org/10.1016/j.cbpb.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  56. Tokarz J, Möller G, Hrabě de Angelis M, Adamski J (2015) Steroids in teleost fishes: A functional point of view. Steroids 103:123–144. https://doi.org/10.1016/j.steroids.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  57. Cleveland BM, Weber GM (2016) Effects of steroid treatment on growth, nutrient partitioning, and expression of genes related to growth and nutrient metabolism in adult triploid rainbow trout (Oncorhynchus mykiss). Domest Anim Endocrinol 56:1-12. https://doi.org/10.1016/j.domaniend.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  58. Youngson AF, McLay HA, Wright RS, Johnstone R (1988) Steroid hormone levels and patterns of growth in the early part of the reproductive cycle of adult Atlantic salmon (Salmo salar L). Aquaculture 69:145–152. https://doi.org/10.1016/0044-8486(88)90193-7

    Article  CAS  Google Scholar 

  59. Lubzens E, Young G, Bobe J, Cerda J (2010) Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 165:367–389. https://doi.org/10.1016/j.ygcen.2009.05.022

    Article  CAS  PubMed  Google Scholar 

  60. Manor M, Weber GM, Salem M, Yao J, Aussanasuwannakul A, Kenney B (2012) Effect of sexual maturation and triploidy on chemical composition and fatty acid content of energy stores in female rainbow trout, Oncorhynchus mykiss. Aquaculture 364–365:312-321. https://doi.org/10.1016/j.aquaculture.2012.08.012

    Article  CAS  Google Scholar 

  61. Olin T, Nazar DS, von der Decken A (1991) Response of epaxial muscle and liver to 17-β estradiol in fed and starved Atlantic salmon (Salmo salar). Aquaculture 99:179-191. https://doi.org/10.1016/0044-8486(91)90297-K

    Article  CAS  Google Scholar 

  62. Toyohara H, Ito K, Ando M, Kinoshita M, Shimizu Y, Sakaguchi M (1991) Effect of maturation on activities of various proteases and protease inhibitors in the muscle of ayu (Plecoglossus altivelis). Comp Biochem Physiol B 99(2):419–424. https://doi.org/10.1016/0305-0491(91)90064-k

    Article  CAS  PubMed  Google Scholar 

  63. Silva LA, Silveira PCL, Ronsani MM, Souza PS, Scheffer D., Vieira LC, Benetti M, De Souza CT, Pinho RA (2011) Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct 29:43–49. https://doi.org/10.1002/cbf.1716

    Article  CAS  PubMed  Google Scholar 

  64. Yamashita M, Konagaya S (1992) Differentiation and localization of catheptic proteinases responsible for extensive autolysis of mature chum salmon muscle (Oncorhynchus keta). Comp Biochem Physiol B 103(4):999-1003. https://doi.org/10.1016/0305-0491(92)90229-K

    Article  Google Scholar 

  65. Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58. https://doi.org/10.1016/j.aquaculture.2010.03.012

    Article  CAS  Google Scholar 

  66. Nakashima K, Komatsu T, Yamazaki M, Abe H (2005) Effects of fasting and refeeding on expression of proteolytic-related genes in skeletal muscle of chicks. J Nutr Sci Vitaminol (Tokyo) 51(4):248–253. https://doi.org/10.3177/jnsv.51.248

    Article  CAS  Google Scholar 

  67. Salem M, Silverstein J, Rexroad CE III, Yao J (2007) Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss). BMC Genomics 8:328. https://doi.org/10.1186/1471-2164-8-328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salem M, Kenney PB, Rexroad CE, Yao J (2006) Microarray gene expression analysis in atrophying rainbow trout muscle: a unique nonmammalian muscle degradation model. Physiol Genomics 28:33–45. https://doi.org/10.1152/physiolgenomics.00114.2006

    Article  CAS  PubMed  Google Scholar 

  69. Dzeja P, Terzic A (2009) Adenylate kinase and AMP signalling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772. https://doi.org/10.3390/ijms10041729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Preziosa E, Liu S, Terova G, Gao X, Liu H, Kucuktas H, Terhune J, Liu Z (2013) Effect of nutrient restriction and re-feeding on calpain family genes in skeletal muscle of channel catfish (Ictalurus punctatus). PLoS ONE 8(3):e59404. https://doi.org/10.1371/journal.pone.0059404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paneru B, Ali A, Al-Tobasei R, Kenney B, Salem M (2018) Crosstalk among lncRNAs, microRNAs and mRNAs in the muscle ‘degradome’ of rainbow trout. Scient Rep 8:8416. https://doi.org/10.1038/s41598-018-26753-2

    Article  CAS  Google Scholar 

  72. Tripathi G, Verma P (2003) Starvation-induced impairment of metabolism in a freshwater catfish. Z Naturforsch C J Biosci 58(5-6):446–451. https://doi.org/10.1515/znc-2003-5-626

    Article  CAS  PubMed  Google Scholar 

  73. Seear PJ, Carmichael SN, Talbot R, Taggart JB, Bron JE, Sweeney GE (2010) Differential gene expression during smoltification of Atlantic salmon (Salmo salar L.): a first large-scale microarray study. Mar Biotechnol 12:126–140. https://doi.org/10.1007/s10126-009-9218-x

    Article  CAS  Google Scholar 

  74. Somero GN, Yancey PH (2011) Osmolytes and cell-volume regulation: physiological and evolutionary principles. In: Comprehensive Physiology. Suppl. 31. Handbook of Physiology, Cell Physiology. John Wiley & Sons, Inc 441–484. https://doi.org/10.1002/cphy.cp140110

    Chapter  Google Scholar 

  75. Lajus DL, Lysenko LA, Kantserova NP, Tushina ED, Ivanova TS, Nemova NN (2020) Spatial heterogeneity and temporal dynamics of protein-degrading activity and life-history traits in the threespine stickleback Gasterosteus aculeatus. Int Aquat Res 12:161-170. https://doi.org/10.22034/IAR.2020.1894323.1019

    Article  Google Scholar 

  76. Golovin PV, Bakhvalova AE, Ivanov MV, Ivanova TS, Smirnova KA, Lajus DL (2019) Sex-biased mortality of marine threespine stickleback Gasterosteus aculeatus L. during their spawning period in the White Sea. Evol Ecol Res 20:279-295.

    Google Scholar 

  77. Saito M, Sato K, Kunisaki N, Kimura S (2000) Characterization of a rainbow trout matrix metalloproteinase capable of degrading type I collagen. Eur J Biochem 267:6943– 6950. https://doi.org/10.1046/j.1432-1033.2000.01807.x

    Article  CAS  PubMed  Google Scholar 

  78. Crespi BJ, Teo R (2002) Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution 56(5):1008–1020. https://doi.org/10.1111/j.0014-3820.2002.tb01412.x

    Article  PubMed  Google Scholar 

  79. Bassett D, Currie PD (2004) Identification of a zebrafish model of muscular dystrophy. Clin Exp Pharmacol Physiol 31(8):537-540. https://doi.org/10.1111/j.1440-1681.2004.04030.x

    Article  CAS  PubMed  Google Scholar 

  80. Coffey EC, Pasquarella ME, Goody MF, Henry CA (2018) Ethanol exposure causes muscle degeneration in zebrafish. J Dev Biol 6(7). https://doi.org/10.3390/jdb6010007

  81. Kongtorp RT, Kjerstad A, Taksdal T, Guttvik A, Falk K (2004) Heart and skeletal muscle inflammation in Atlantic salmon, Salmo salar L: a new infectious disease. J Fish Dis 27(6):351–358. https://doi.org/10.1111/j.1365-2761.2004.00549.x

    Article  CAS  PubMed  Google Scholar 

  82. Kuz’min EV, Kuz’mina OYu (2001) Activities of lactate and malate dehydrogenase of the sterlet and Russian sturgeon under conditions of massive spread of muscle pathology. J Evol Biochem Physiol 37(1):35-42.

    Article  Google Scholar 

Download references

Funding

The analysis of literature was implemented within the Government assignment to the Institute of Biology (Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk); theme 0218-2019-0076. The obtaining of own experimental data on aquaculture fish species were supported by the Russian Science Foundation; grant No. 17-74-20098.

Author information

Authors and Affiliations

Authors

Contributions

The basic idea and manuscript editing (N.N.N.); data analysis, writing of the manuscript draft (L.A.L.), literature search (N.P.K.).

Corresponding author

Correspondence to L. A. Lysenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 730–754https://doi.org/10.31857/S0044452921020030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemova, N.N., Kantserova, N.P. & Lysenko, L.A. The Traits of Protein Metabolism in the Skeletal Muscle of Teleost Fish. J Evol Biochem Phys 57, 626–645 (2021). https://doi.org/10.1134/S0022093021030121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021030121

Keywords:

Navigation