Skip to main content
Log in

Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era

  • Regenerative Medicine (SM Wu, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation.

Recent Findings

Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types.

Summary

The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Park DS, Fishman GI. Basic science for clinicians: the cardiac conduction system. Circulation. 2011;123(8):904–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Padala SK, Cabrera J-A, Ellenbogen KA. Anatomy of the cardiac conduction system. Pacing Clin Electrophysiol PACE. 2021;44(1):15–25.

    Article  PubMed  Google Scholar 

  3. van Eif VWW, Devalla HD, Boink GJJ, Christoffels VM. Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol. 2018;15(10):617–30.

    Article  PubMed  CAS  Google Scholar 

  4. Vedantham V. New approaches to biological pacemakers: links to sinoatrial node development. Trends Mol Med. 2015;21(12):749–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Goodyer WR, Beyersdorf BM, Paik DT, Tian L, Li G, Buikema JW, et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ Res. 2019;125(4):379–97 This study represents the first effort to successfully define the transcriptional profile of the entire murine CCS at single-cell resolution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cabrera J-Á, Anderson RH, Macías Y, Nevado-Medina J, Porta-Sánchez A, Rubio JM, et al. Variable arrangement of the atrioventricular conduction axis within the triangle of Koch: implications for permanent His bundle pacing. JACC Clin Electrophysiol. 2020;6(4):362–77.

    Article  PubMed  Google Scholar 

  7. Billette J, Tadros R. An integrated overview of AV node physiology. Pacing Clin Electrophysiol. 2019;42(7):805–20.

    Article  PubMed  Google Scholar 

  8. van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development. 2016;143(2):197–210.

    Article  PubMed  CAS  Google Scholar 

  9. Aanhaanen WTJ, Mommersteeg MTM, Norden J, Wakker V, de Gier-de Vries C, Anderson RH, et al. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res. 2010;107(6):728–36.

    Article  CAS  PubMed  Google Scholar 

  10. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, et al. Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation. 2009;119(12):1562–75.

    Article  PubMed  Google Scholar 

  11. Csepe TA, Zhao J, Hansen BJ, Li N, Sul LV, Lim P, et al. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog Biophys Mol Biol. 2016;120(1–3):164–78.

    Article  PubMed  Google Scholar 

  12. Tranum-Jensen J, Wilde AA, Vermeulen JT, Janse MJ. Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ Res. 1991 Aug;69(2):429–37.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez-Palomo A, Alanis J, Benitez D. Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features. J Cell Biol. 1970;47(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vigmond EJ, Stuyvers BD. Modeling our understanding of the His-Purkinje system. Prog Biophys Mol Biol. 2016;120(1–3):179–88.

    Article  CAS  PubMed  Google Scholar 

  15. Haissaguerre M, Vigmond E, Stuyvers B, Hocini M, Bernus O. Ventricular arrhythmias and the His-Purkinje system. Nat Rev Cardiol. 2016;13(3):155–66.

    Article  PubMed  Google Scholar 

  16. Keith A, Flack MW. The auriculo-ventricular bundle of the human heart. 1906. Ann Noninvasive Electrocardiol Off J Int Soc Holter Noninvasive Electrocardiol Inc. 2004;9(4):400–9.

    Article  Google Scholar 

  17. Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM. The anatomy and physiology of the sinoatrial node--a contemporary review. Pacing Clin Electrophysiol PACE. 2010;33(11):1392–406.

    Article  PubMed  Google Scholar 

  18. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87.

    Article  CAS  PubMed  Google Scholar 

  19. Fedorov VV, Glukhov AV, Chang R. Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol Heart Circ Physiol. 2012;302(9):H1773–83.

    Article  CAS  PubMed  Google Scholar 

  20. Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci. 2003;100(25):15235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature. 1998;393(6685):587–91.

    Article  CAS  PubMed  Google Scholar 

  22. Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai C-L, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007;304(1):286–96.

    Article  CAS  PubMed  Google Scholar 

  23. Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007;115(14):1830–8.

    Article  CAS  PubMed  Google Scholar 

  24. Wiese C, Grieskamp T, Airik R, Mommersteeg MTM, Gardiwal A, de Gier-de Vries C, et al. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 2009;104(3):388–97.

    Article  CAS  PubMed  Google Scholar 

  25. Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, et al. Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart: ion channel expression in the murine heart. J Physiol. 2005;562(1):223–34.

    Article  CAS  PubMed  Google Scholar 

  26. Tellez JO, Dobrzynski H, Greener ID, Graham GM, Laing E, Honjo H, et al. Differential expression of ion channel transcripts in atrial muscle and sinoatrial node in rabbit. Circ Res. 2006;99(12):1384–93.

    Article  CAS  PubMed  Google Scholar 

  27. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart: regional ion channel subunit gene expression in the human heart. J Physiol. 2007;582(2):675–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, et al. Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest. 2015;125(8):3256–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vedantham V, Galang G, Evangelista M, Deo RC, Srivastava D. RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for Islet-1 in cardiac pacemaker cells. Circ Res. 2015;116(5):797–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. •• van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, et al. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Dev Camb Engl. 2019;146(8). This study elucidates a conserved genetic program between the mouse and human SAN using bulk RNA-seq, validating known markers and identifying novel genes such as SMOC2 and VSNL1 and allowing for the translation of knowledge obtained primarily in a murine model to the human SAN.

  31. Fedorov VV, Schuessler RB, Hemphill M, Ambrosi CM, Chang R, Voloshina AS, et al. Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria. Circ Res. 2009;104(7):915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sonneveld S, Verhagen BMP, Tanenbaum ME. Heterogeneity in mRNA translation. Trends Cell Biol. 2020 Aug;30(8):606–18.

    Article  CAS  PubMed  Google Scholar 

  33. • Linscheid N, Logantha SJRJ, Poulsen PC, Zhang S, Schrölkamp M, Egerod KL, et al. Quantitative proteomics and single-nucleus transcriptomics of the sinus node elucidates the foundation of cardiac pacemaking. Nat Commun. 2019;10(1):2889 Findings from this study present a detailed picture of the SAN by identifying cell type–specific differences in the transcriptome and proteome within the SAN and compared with surrounding atrial myocardium.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. van Weerd JH, Badi I, van den Boogaard M, Stefanovic S, van de Werken HJG, Gomez-Velazquez M, et al. A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. Circ Res. 2014;115(4):432–41.

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez-Perez A, Sathe AA, Bhakta M, Leggett K, Xing C, Munshi NV. Hand2 selectively reorganizes chromatin accessibility to induce pacemaker-like transcriptional reprogramming. Cell Rep. 2019;27(8):2354–2369.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Galang G, Mandla R, Ruan H, Jung C, Sinha T, Stone NR, et al. ATAC-Seq reveals an Isl1 enhancer that regulates sinoatrial node development and function. Circ Res. 2020;127(12):1502–18 This study explores in vivo the epigenome of the SAN using bulk ATAC-seq to identify novel enhancers important for the unique gene regulatory program that drives SAN development and function. Importantly, a conserved enhancer region specific to ISL1 is hypothesized to play a key role in human SAN function.

    Article  CAS  PubMed  Google Scholar 

  37. • van Eif VWW, Protze SI, Bosada FM, Yuan X, Sinha T, van Duijvenboden K, et al. Genome-wide analysis identifies an essential human TBX3 pacemaker enhancer. Circ Res. 2020;127(12):1522–35 This study presents a genome-wide accessibility profile of the human SAN with a subset of pacemaker-specific regulatory elements validated in vivo, including a conserved enhancer region that drives the expression of TBX3 within the SAN.

    Article  PubMed  CAS  Google Scholar 

  38. Tawara S. Das Reizleitungssystem des Säugetierherzens; eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Fischer; 1906.

  39. Kurian T, Ambrosi C, Hucker W, Fedorov VV, Efimov IR. Anatomy and electrophysiology of the human AV node. Pacing Clin Electrophysiol PACE. 2010;33(6):754–62.

    Article  PubMed  Google Scholar 

  40. Meijler FL, Janse MJ. Morphology and electrophysiology of the mammalian atrioventricular node. Physiol Rev. 1988;68(2):608–47.

    Article  CAS  PubMed  Google Scholar 

  41. Inoue S, Becker AE. Posterior extensions of the human compact atrioventricular node: a neglected anatomic feature of potential clinical significance. Circulation. 1998;97(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  42. Atkinson AJ, Logantha SJRJ, Hao G, Yanni J, Fedorenko O, Sinha A, et al. Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. J Am Heart Assoc. 2013;2(6):e000246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bakker ML, Moorman AFM, Christoffels VM. The atrioventricular node: origin, development, and genetic program. Trends Cardiovasc Med. 2010;20(5):164–71.

    Article  PubMed  Google Scholar 

  44. Hoffman BF, De Carvalho AP, Mello WC, Cranefield PF. Electrical activity of single fibers of the atrioventricular node. Circ Res. 1959;7(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  45. Billette J. Atrioventricular nodal activation during periodic premature stimulation of the atrium. Am J Phys. 1987;252(1 Pt 2):H163–77.

    CAS  Google Scholar 

  46. Meijler FL, Janse MJ. Morphology and electrophysiology of the mammalian atrioventricular node. Physiol Rev. 1988;68(2):608–47.

    Article  CAS  PubMed  Google Scholar 

  47. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol. 1996;493(Pt 3):801–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coppen SR, Severs NJ, Gourdie RG. Connexin45 (alpha 6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet. 1999;24(1–2):82–90.

    Article  CAS  PubMed  Google Scholar 

  49. Yoo S, Dobrzynski H, Fedorov VV, Xu S-Z, Yamanushi TT, Jones SA, et al. Localization of Na+ channel isoforms at the atrioventricular junction and atrioventricular node in the rat. Circulation. 2006;114(13):1360–71.

    Article  CAS  PubMed  Google Scholar 

  50. Coppen SR, Kaba RA, Halliday D, Dupont E, Skepper JN, Elneil S, et al. Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol Cell Biochem. 2003;242(1–2):121–7.

    Article  CAS  PubMed  Google Scholar 

  51. Aanhaanen WTJ, Brons JF, Domínguez JN, Rana MS, Norden J, Airik R, et al. The Tbx2+ primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res. 2009;104(11):1267–74.

    Article  CAS  PubMed  Google Scholar 

  52. Hoogaars WMH, Tessari A, Moorman AFM, de Boer PAJ, Hagoort J, Soufan AT, et al. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 2004;62(3):489–99.

    Article  CAS  PubMed  Google Scholar 

  53. Singh R, Hoogaars WM, Barnett P, Grieskamp T, Rana MS, Buermans H, et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell Mol Life Sci CMLS. 2012;69(8):1377–89.

    Article  CAS  PubMed  Google Scholar 

  54. Horsthuis T, Buermans HPJ, Brons JF, Verkerk AO, Bakker ML, Wakker V, et al. Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. Circ Res. 2009;105(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  55. Liang X, Evans SM, Sun Y. Insights into cardiac conduction system formation provided by HCN4 expression. Trends Cardiovasc Med. 2015;25(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bakker ML, Boink GJJ, Boukens BJ, Verkerk AO, van den Boogaard M, den Haan AD, et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res. 2012;94(3):439–49.

    Article  CAS  PubMed  Google Scholar 

  57. Verheule S, Kaese S. Connexin diversity in the heart: insights from transgenic mouse models. Front Pharmacol. 2013;4:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greener ID, Monfredi O, Inada S, Chandler NJ, Tellez JO, Atkinson A, et al. Molecular architecture of the human specialised atrioventricular conduction axis. J Mol Cell Cardiol. 2011;50(4):642–51.

    Article  CAS  PubMed  Google Scholar 

  59. Schram G, Pourrier M, Melnyk P, Nattel S. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res. 2002;90(9):939–50.

    Article  CAS  PubMed  Google Scholar 

  60. Kreuzberg MM, Söhl G, Kim J-S, Verselis VK, Willecke K, Bukauskas FF. Functional properties of mouse connexin30.2 expressed in the conduction system of the heart. Circ Res. 2005;96(11):1169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Miquerol L, Bellon A, Moreno N, Beyer S, Meilhac SM, Buckingham M, et al. Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: a dual contribution of the first and second heart fields. Dev Dyn Off Publ Am Assoc Anat. 2013;242(6):665–77.

    CAS  Google Scholar 

  62. Greener ID, Tellez JO, Dobrzynski H, Yamamoto M, Graham GM, Billeter R, et al. Ion channel transcript expression at the rabbit atrioventricular conduction axis. Circ Arrhythm Electrophysiol. 2009;2(3):305–15.

    Article  CAS  PubMed  Google Scholar 

  63. Horsthuis T, Buermans HPJ, Brons JF, Verkerk AO, Bakker ML, Wakker V, et al. Gene expression profiling of the forming atrioventricular node using a novel tbx3-based node-specific transgenic reporter. Circ Res. 2009;105(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  64. Mohan RA, Bosada FM, van Weerd JH, van Duijvenboden K, Wang J, Mommersteeg MTM, et al. T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system. Proc Natl Acad Sci U S A. 2020;117(31):18617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. • Bhattacharyya S, Duan J, Wang L, Li B, Bhakta M, Fernandez-Perez A, et al. Using Gjd3-CreEGFP mice to examine atrioventricular node morphology and composition. Sci Rep. 2019;9(1):2106 This study presents a novel transgenic mouse model for improved characterization of AVN cellular heterogeneity using expression of a GFP reporter gene under the control of endogenous GJD3 regulatory elements without disrupting native expression. Application of this model enabled visualization and microdissection of the AVN and generation of a single-cell atlas of the AVN region.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mazgalev TN, Tchou PJ. Atrial-AV nodal electrophysiology: a view from the millennium. Hoboken: Wiley-Blackwell; 2000. First Edition.

  67. Park DS, Fishman GI. Development and function of the cardiac conduction system in health and disease. J Cardiovasc Dev Dis. 2017;4(2):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.

    Article  CAS  PubMed  Google Scholar 

  69. Miquerol L, Moreno-Rascon N, Beyer S, Dupays L, Meilhac SM, Buckingham ME, et al. Biphasic development of the mammalian ventricular conduction system. Circ Res. 2010;107(1):153–61.

    Article  CAS  PubMed  Google Scholar 

  70. Caref EB, Boutjdir M, Himel HD, El-Sherif N. Role of subendocardial Purkinje network in triggering torsade de pointes arrhythmia in experimental long QT syndrome. EP Eur. 2008;10(10):1218–23.

    Google Scholar 

  71. Kang G, Giovannone SF, Liu N, Liu F-Y, Zhang J, Priori SG, et al. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res. 2010;107(4):512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Almehairi M, Alshiekh-Ali AA, Alfagih A. Idiopathic short-coupled ventricular tachyarrhythmias: systematic review and validation of electrocardiographic indices. Egypt Heart J. 2018;70(4):301–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Garcia-Bustos V, Sebastian R, Izquierdo M, Molina P, Chorro FJ, Ruiz-Sauri A. A quantitative structural and morphometric analysis of the Purkinje network and the Purkinje-myocardial junctions in pig hearts. J Anat. 2017;230(5):664–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ono N, Yamaguchi T, Ishikawa H, Arakawa M, Takahashi N, Saikawa T, et al. Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy. Arch Histol Cytol. 2009;72(3):139–49.

    Article  PubMed  Google Scholar 

  75. Romero D, Camara O, Sachse F, Sebastian R. Analysis of microstructure of the cardiac conduction system based on three-dimensional confocal microscopy. PLoS One. 2016;11(10):e0164093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HVM, Abran P, et al. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res. 2004;63(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  77. Pallante BA, Giovannone S, Fang-Yu L, Zhang J, Liu N, Kang G, et al. Contactin-2 expression in the cardiac Purkinje fiber network. Circ Arrhythm Electrophysiol. 2010;3(2):186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moskowitz IPG, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S, et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Dev Camb Engl. 2004;131(16):4107–16.

    CAS  Google Scholar 

  79. Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113(4):399–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delorme B, Dahl E, Jarry-Guichard T, Briand JP, Willecke K, Gros D, et al. Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res. 1997;81(3):423–37.

    Article  CAS  PubMed  Google Scholar 

  81. Arnolds DE, Liu F, Fahrenbach JP, Kim GH, Schillinger KJ, Smemo S, et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J Clin Invest. 2012;122(7):2509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang S-S, Kim K-H, Rosen A, Smyth JW, Sakuma R, Delgado-Olguín P, et al. Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci U S A. 2011;108(33):13576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim K-H, Rosen A, Hussein SMI, Puviindran V, Korogyi AS, Chiarello C, et al. Irx3 is required for postnatal maturation of the mouse ventricular conduction system. Sci Rep. 2016;6:19197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li Y, Tian X, Zhao H, He L, Zhang S, Huang X, et al. Genetic targeting of Purkinje fibres by Sema3a-CreERT2. Sci Rep. 2018;8(1):2382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kim EE, Shekhar A, Lu J, Lin X, Liu F-Y, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124(11):5027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shekhar A, Lin X, Liu F-Y, Zhang J, Mo H, Bastarache L, et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest. 2016;126(12):4444–59.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shekhar A, Lin X, Lin B, Liu F-Y, Zhang J, Khodadadi-Jamayran A, et al. ETV1 activates a rapid conduction transcriptional program in rodent and human cardiomyocytes. Sci Rep. 2018;8(1):9944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Haissaguerre M, Vigmond E, Stuyvers B, Hocini M, Bernus O. Ventricular arrhythmias and the His-Purkinje system. Nat Rev Cardiol. 2016;13(3):155–66.

    Article  PubMed  Google Scholar 

  89. Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J. Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2010;7(8):1122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol. 2019;16(8):457–75.

    Article  PubMed  Google Scholar 

  91. Brown SDM, Holmes CC, Mallon A-M, Meehan TF, Smedley D, Wells S. High-throughput mouse phenomics for characterizing mammalian gene function. Nat Rev Genet. 2018;19(6):357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Protze SI, Liu J, Nussinovitch U, Ohana L, Backx PH, Gepstein L, et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat Biotechnol. 2017;35(1):56–68.

    Article  CAS  PubMed  Google Scholar 

  93. Marx V. Method of the year: spatially resolved transcriptomics. Nat Methods. 2021;18(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  94. • Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC, et al. Transcriptional and cellular diversity of the human heart. Circulation. 2020;142(5):466–82 This study is the first to capture the transcriptional diversity of working human cardiomyocytes at single-cell resolution.

    Article  CAS  PubMed  Google Scholar 

  95. • Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of fetal gene expression. Science. 2020;370(6518). This study demonstrates the incredible utility of single-nuclear RNA sequencing to create an expansive developmental gene expression atlas derived from multiple human fetal tissues.

  96. • Domcke S, Hill AJ, Daza RM, Cao J, O’Day DR, Pliner HA, et al. A human cell atlas of fetal chromatin accessibility. Science. 2020;370(6518) Findings of this study allow for the correlation of transcriptional and epigenetic profiles to identify tissue- and cell type–specific regulatory elements that drive the formation of unique genetic programs.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Goodyer.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantri, S., Wu, S.M. & Goodyer, W.R. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 23, 103 (2021). https://doi.org/10.1007/s11886-021-01536-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01536-w

Keywords

Navigation