Skip to main content

Advertisement

Log in

Determine Multiple Classes of Veterinary Antibiotics in Soil: Comparing Dispersive and Solid-Phase Extraction for Sample Cleanup

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Veterinary antibiotics in agricultural soil are a growing concern, as they pose risks to soil quality and food safety. An analysis approach that covers a broad spectrum of target substances and has low detection limits is required for a comprehensive risk assessment. In this study, we developed a method for simultaneously analyzing 34 antibiotics (tetracyclines, sulfonamides, macrolides, and quinolones) in agricultural soil. The soil was extracted using an organic solution of acetonitrile and methanol (v:v, 1:1) with 0.2% formic acid followed by the addition of Na2EDTA-McIlvaine buffer. Dispersive and solid-phase extractions (SPE) were compared for cleanup. Ultra-performance liquid chromatography-tandem mass spectrometry with matrix-matched calibration was used for quantification. The results of this study showed that SPE was more appropriate for determining multi-class antibiotics. The SPE approach proved better recoveries (56–98%) than dispersive SPE (d-SPE) (28–121%). The matrix effects obtained by SPE (46–299%) were more reasonable than that by d-SPE (3–4036%). The method detection limits by SPE were in the range of 0.007–1.400 μg/kg with relative standard deviations < 18%. This optimized method was then applied to 55 agricultural soil samples. The total concentrations of veterinary antibiotics ranged from blow method detection limits to 1448 μg/kg. Tetracyclines were the dominant antibiotics, particularly in soil applied with swine manure. This method can be used to screen for and accurately determine the presence of veterinary antibiotics in soil, which will aid their risk assessment and regulation of these antibiotics in the agroecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Q, Ying G, Pan C, Liu Y, Zhao J (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  PubMed  Google Scholar 

  2. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

    Article  CAS  PubMed  Google Scholar 

  3. Liang Y, Pei M, Wang D, Cao S, Xiao X, Sun B (2017) Improvement of soil ecosystem multifunctionality by dissipating manure-induced antibiotics and resistance genes. Environ Sci Technol 51(9):4988–4998. https://doi.org/10.1021/acs.est.7b00693

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Wu X, Mo C, Tai Y, Huang X, Xiang L (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area Southern China. J Agr Food Chem 59(13):7268–7276. https://doi.org/10.1021/jf1047578

    Article  CAS  Google Scholar 

  5. Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998. https://doi.org/10.1016/j.envpol.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  6. Wang N, Guo X, Xu J, Kong X, Gao S, Shan Z (2014) Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China. J Environ Sci Health B 49(7):468–479. https://doi.org/10.1080/03601234.2014.896660

    Article  CAS  PubMed  Google Scholar 

  7. Huang X, Liu C, Li K, Liu F, Liao D, Liu L, Zhu G, Liao J (2013) Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province. China Environ Sci Pollut R 20(12):9066–9074. https://doi.org/10.1007/s11356-013-1905-5

    Article  CAS  Google Scholar 

  8. Schreiner VC, Szöcs E, Bhowmik AK, Vijver MG, Schäfer RB (2016) Pesticide mixtures in streams of several European countries and the USA. Sci Total Environ 573:680–689. https://doi.org/10.1016/j.scitotenv.2016.08.163

    Article  CAS  PubMed  Google Scholar 

  9. Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39(11):3981–3989. https://doi.org/10.1021/es048550a

    Article  CAS  PubMed  Google Scholar 

  10. Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Sepp K, Lõhmus R, Nei L (2009) Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry. J Chromatogr A 1216(32):5949–5954. https://doi.org/10.1016/j.chroma.2009.06.029

    Article  CAS  PubMed  Google Scholar 

  11. Golet EM, Strehler A, Alder AC, Giger W (2002) Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74(21):5455–5462. https://doi.org/10.1021/ac025762m

    Article  CAS  PubMed  Google Scholar 

  12. Hu W, Ma L, Guo C, Sha J, Zhu X, Wang Y (2012) Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int J Environ Anal Chem 92(6):698–713. https://doi.org/10.1080/03067319.2010.520122

    Article  CAS  Google Scholar 

  13. Guo C, Wang M, Xiao H, Huai B, Wang F, Pan G, Liao X, Liu Y (2016) Development of a modified QuEChERS method for the determination of veterinary antibiotics in swine manure by liquid chromatography tandem mass spectrometry. J Chromatogr B 1027:110–118. https://doi.org/10.1016/j.jchromb.2016.05.034

    Article  CAS  Google Scholar 

  14. Lyu J, Yang L, Zhang L, Ye B, Wang L (2020) Antibiotics in soil and water in China–a systematic review and source analysis. Environ Pollut 266:115147. https://doi.org/10.1016/j.envpol.2020.115147

    Article  CAS  PubMed  Google Scholar 

  15. Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 251:126351. https://doi.org/10.1016/j.chemosphere.2020.126351

    Article  CAS  PubMed  Google Scholar 

  16. Lee YJ, Choi JH, Aty AMAE, Chung HS, Lee HS, Kim SW, Rahman MM, Park BJ, Kim JE, Shin HC, Shim JH (2017) Development of a single-run analytical method for the detection of ten multi-class emerging contaminants in agricultural soil using an acetate-buffered QuEChERS method coupled with LC–MS/MS. J Sep Sci 40(2):415–423

    Article  CAS  Google Scholar 

  17. Yu X, Liu H, Pu C, Chen J, Sun Y, Hu L (2018) Determination of multiple antibiotics in leafy vegetables using QuEChERS–UHPLC–MS/MS. J Sep Sci 41(3):713–722

    Article  CAS  Google Scholar 

  18. Shendy AH, Al-Ghobashy MA, Gad Alla SA, Lotfy HM (2016) Development and validation of a modified QuEChERS protocol coupled to LC–MS/MS for simultaneous determination of multi-class antibiotic residues in honey. Food Chem 190:982–989. https://doi.org/10.1016/j.foodchem.2015.06.048

    Article  CAS  PubMed  Google Scholar 

  19. Grande-Martínez Á, Moreno-González D, Arrebola-Liébanas FJ, Garrido-Frenich A, García-Campaña AM (2018) Optimization of a modified QuEChERS method for the determination of tetracyclines in fish muscle by UHPLC–MS/MS. J Pharmaceut Biomed 155:27–32. https://doi.org/10.1016/j.jpba.2018.03.029

    Article  CAS  Google Scholar 

  20. Meng M, He Z, Xu Y, Wang L, Peng Y, Liu X (2017) Simultaneous extraction and determination of antibiotics in soils using a method based on quick, easy, cheap, effective, rugged, and safe extraction and liquid chromatography with tandem mass spectrometry. J Sep Sci 40(16):3214–3220. https://doi.org/10.1002/jssc.201700128

    Article  CAS  PubMed  Google Scholar 

  21. Salvia M, Vulliet E, Wiest L, Baudot R, Cren-Olivé C (2012) Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography–tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J Chromatogr A 1245:122–133. https://doi.org/10.1016/j.chroma.2012.05.034

    Article  CAS  PubMed  Google Scholar 

  22. PingguoYang BJM, Yang M (2016) Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China. Catena (Giessen) 145:92–98. https://doi.org/10.1016/j.catena.2016.05.025

    Article  CAS  Google Scholar 

  23. USEPA (2016) Definition and procedure for the determination of the method detection limit. USEPA, Washington

    Google Scholar 

  24. Li Y, Chen Z, Wen S, Hou X, Zhang R, Ma M (2018) Multiresidue determination of antibiotics in preserved eggs using a QuEChERS-based procedure by ultrahigh-performance liquid chromatography tandem mass spectrometry. Acta Chromatogr 30(1):9–16. https://doi.org/10.1556/1326.2017.29211

    Article  CAS  Google Scholar 

  25. Lopes RP, Reyes RC, Romero-González R, Vidal JLM, Frenich AG (2012) Multiresidue determination of veterinary drugs in aquaculture fish samples by ultra high performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B 895–896:39–47. https://doi.org/10.1016/j.jchromb.2012.03.011

    Article  CAS  Google Scholar 

  26. Pamreddy A, Hidalgo M, Havel J, Salvadó V (2013) Determination of antibiotics (tetracyclines and sulfonamides) in biosolids by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1298:68–75. https://doi.org/10.1016/j.chroma.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  27. Martínez-Piernas AB, Polo-López MI, Fernández-Ibáñez P, Agüera A (2018) Validation and application of a multiresidue method based on liquid chromatography-tandem mass spectrometry for evaluating the plant uptake of 74 microcontaminants in crops irrigated with treated municipal wastewater. J Chromatogr A 1534:10–21. https://doi.org/10.1016/j.chroma.2017.12.037

    Article  CAS  PubMed  Google Scholar 

  28. Janusch F, Scherz G, Mohring SAI, Hamscher G (2014) Determination of fluoroquinolones in chicken feces—a new liquid–liquid extraction method combined with LC–MS/MS. Environ Toxicol Phar 38(3):792–799. https://doi.org/10.1016/j.etap.2014.09.011

    Article  CAS  Google Scholar 

  29. Pan X, Qiang Z, Ben W, Chen M (2011) Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry. J Environ Sci-China 23(10):1729–1737. https://doi.org/10.1016/S1001-0742(10)60590-6

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Wang H, Liu X, Zhao G, Sun Y (2016) Dissipation kinetics of oxytetracycline, tetracycline, and chlortetracycline residues in soil. Environ Sci Pollut R 23(14):13822–13831. https://doi.org/10.1007/s11356-016-6513-8

    Article  CAS  Google Scholar 

  31. Yuan X, Qiang Z, Ben W, Zhu B, Liu J (2014) Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry. J Environ Sci-China 26(9):1949–1959. https://doi.org/10.1016/j.jes.2014.06.022

    Article  PubMed  Google Scholar 

  32. Qiang Z, Adams C (2004) Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res 38(12):2874–2890. https://doi.org/10.1016/j.watres.2004.03.017

    Article  CAS  PubMed  Google Scholar 

  33. Tao Y, Yu G, Chen D, Pan Y, Liu Z, Wei H, Peng D, Huang L, Wang Y, Yuan Z (2012) Determination of 17 macrolide antibiotics and avermectins residues in meat with accelerated solvent extraction by liquid chromatography–tandem mass spectrometry. J Chromatogr B 897:64–71. https://doi.org/10.1016/j.jchromb.2012.04.011

    Article  CAS  Google Scholar 

  34. Tsai W, Huang T, Huang J, Hsue Y, Chuang H (2009) Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J Chromatogr A 1216(12):2263–2269. https://doi.org/10.1016/j.chroma.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  35. Ben W, Qiang Z, Adams C, Zhang H, Chen L (2008) Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography–mass spectrometry. J Chromatogr A 1202(2):173–180. https://doi.org/10.1016/j.chroma.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  36. Stoob K, Singer HP, Stettler S, Hartmann N, Mueller SR, Stamm CH (2006) Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J Chromatogr a 1128(1–2):1–9. https://doi.org/10.1016/j.chroma.2006.06.048

    Article  CAS  PubMed  Google Scholar 

  37. Hites RA (2019) Correcting for censored environmental measurements. Environ Sci Technol 53(19):11059–11060. https://doi.org/10.1021/acs.est.9b05042

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Chen J, Wang J, Ma Z, Han P, Luan Y, Lu A (2015) Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ 521–522:101–107. https://doi.org/10.1016/j.scitotenv.2015.03.070

    Article  CAS  PubMed  Google Scholar 

  39. Zeng Q, Sun J, Zhu L (2019) Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. Chemosphere 224:900–909. https://doi.org/10.1016/j.chemosphere.2019.02.167

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Li Y, Li X, Ma X, Ru S, Qiu T, Lu A (2020) Veterinary antibiotics and estrogen hormones in manures from concentrated animal feedlots and their potential ecological risks. Environ Res. https://doi.org/10.1016/j.envres.2020.110463

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang H, Chu Y, Fang C (2017) Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang Province, China. B Environ Contam Tox 98(4):472–477. https://doi.org/10.1007/s00128-017-2052-3

    Article  CAS  Google Scholar 

  42. Ho YB, Zakaria MP, Latif PA, Saari N (2014) Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci Total Environ 488–489:261–267. https://doi.org/10.1016/j.scitotenv.2014.04.109

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W (2020) Antibiotics in animal manure and manure-based fertilizers: Occurrence and ecological risk assessment. Chemosphere 255:127006. https://doi.org/10.1016/j.chemosphere.2020.127006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Agriculture and Rural Affairs of the People's Republic of China (Grant # GJFP2019037) and Zhejiang University (Startup grant for Z. Lu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hang.

Ethics declarations

Conflict of Interests

Each author declares that he/she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L., Zhao, Y., Liu, C. et al. Determine Multiple Classes of Veterinary Antibiotics in Soil: Comparing Dispersive and Solid-Phase Extraction for Sample Cleanup. Chromatographia 84, 833–844 (2021). https://doi.org/10.1007/s10337-021-04064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04064-5

Keywords

Navigation