Skip to main content
Log in

Alteration of root and shoot morphologies by interspecific replacement of individual Upland cotton chromosome or chromosome segment pairs

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic approaches often lead to the most cost-effective and efficient means to improve crops, especially those grown widely. But for most crops, cotton included, genetic improvement efforts have focused far more on above-ground plant attributes than on root systems. Root system establishment is crucial to cotton seedling success, subsequent development, crop performance and sustainability. As a first step toward genetic enhancement of cotton root systems, significant heritable phenotypic variation must be found or created. The overall objective of this research was to study the effect of substituted chromosomes or chromosome segments from the donor tetraploid species Gossypium barbadense, G. mustelinum, and G. tomentosum on the selected traits of the stem, leaf, and especially root in CS lines. Twenty-seven chromosome substitution (CS) lines, containing different pairs or short segments of chromosomes from G. barbadense (CS-B lines), G. mustelinum (CS-M lines), and G. tomentosum (CS-T lines) and two parents, TM-1, parent quasi-isogenic to the CS lines and G. barbadense 3-79, the donor parent to all CS-B lines, were analyzed. Goals were to determine if CS lines significantly affect any of 17 morphological shoot and root traits. Indeed, significant line-based variation occurred for several root and shoot phenotypes. Comparisons of means and two-way hierarchical cluster analysis revealed several CS lines simultaneously affected multiple shoot and/or root traits, positively or negatively. Pairwise correlations of traits and the cluster analysis showed strong relationships among certain traits. The high correlation among several root traits suggests that easier-to-screen traits might be leveraged strategically to devise breeding-friendly methods for phenotypically evaluating root system morphology. Most importantly, this research identifies CS lines with prospectively novel individual trait effects and others with multi-trait effects that can be further dissected and used to improve our knowledge of cotton root systems, their development, genetic control and genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arsenault E, Bernard J-T, Carr CW, Genest-Laplante E (1995) A total energy demand model of Québec. Energy Econ 17:163–171. https://doi.org/10.1016/0140-9883(94)00003-Y

    Article  Google Scholar 

  • Awasthi A, Reddy KR, Saha S, Jenkins JN, Stelly DM (2018) Morph-physiological responses of cotton interspecific chromosome substitution lines to low temperature and drought stresses. Euphytica 214:218–227. https://doi.org/10.1007/S10681-018-2300-6

    Article  Google Scholar 

  • Balls WL (1919) The cotton plant in Egypt. MacMillan and Company Ltd., London

    Google Scholar 

  • Beasley JO (1940) The production of polyploids in Gossypium. J Hered 31:39–48

    Article  CAS  Google Scholar 

  • Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OU (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:581–1590. https://doi.org/10.1016/j.plantsci.2005.02.008

    Article  CAS  Google Scholar 

  • Chen ZJ, Sreedasyam A, Ando A et al (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52:525–533. https://doi.org/10.1038/s41588-020-0614-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian Islands cotton, Gossypium tomentosum. Am J Bot 79(1):1311–1319

    Article  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607

    Article  CAS  Google Scholar 

  • Eissa AM, Jenkins JN, Vaughan CE (1983) Inheritance of seedling root length and relative root weight in cotton. Crop Sci 23:1107–1111

    Article  Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1984) Quantitative genetics, cytology and cytogenetics. In: Kohel RJ, Lewis CF (eds) Cotton. American Society of Agronomy, Madison, pp 81–129

    Google Scholar 

  • Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genet 23:271–375

    Article  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141:1147–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phyto L. 118(3):383–389

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509

    Article  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the “evolution under domestication” of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    Article  CAS  Google Scholar 

  • Jenkins JN, McCarty JC Jr, Campbell BT, Hayes RW, Wu J, Saha S, Stelly DM (2017a) Genetic effects of chromosomes 1, 4, and 18 from three tetraploid Gossypium species in top crosses with five elite cultivars. Crop Sci 57:1338–1346

    Article  Google Scholar 

  • Jenkins JN, McCarty JC Jr, Campbell BT, Hayes RW, Wu J, Saha S, Stelly DM (2017) Genotypic comparisons of chromosomes 01, 04 and 18 from three tetraploid species of Gossypium in top crosses with five elite cultivars of G. hirsutum L. Euphytica 213:107

    Article  CAS  Google Scholar 

  • Kramer PJ (1983) Water deficits and plant growth. In: Kramer PJ (ed) Water relations of plants. Academic Press, New York, pp 342–389

    Chapter  Google Scholar 

  • Krieg Pettigrew DR, Sung FJM (1986) Source-sink relationships as affected by water stress. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, TN, pp 73–78

    Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13. https://doi.org/10.1104/pp.109.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP (2005) Root architecture and nutrient acquisition. In: Bassiri RH (ed) Nutrient acquisition by plants. An ecological perspective, vol 181. Springer, Berlin, pp 147–183

    Chapter  Google Scholar 

  • Lynch JP, Brown KM (2012) New roots for agriculture: exploiting the root phenome. Philos Trans R Soc Lond Ser B Biol Sci 367(1595):1598–1604. https://doi.org/10.1098/rstb.2011.0243

    Article  Google Scholar 

  • Malik RS, Dhankar JS, Turner NC (1979) Influence of soil water deficits on root growth of cotton seedlings. Plant Soil 53:109–115

    Article  Google Scholar 

  • McCarty JC, Wu J, Jenkins JN (2006) Genetic diversity for agronomic and fiber traits in day-neutral accessions derived from primitive cotton germplasm. Euphytica 148:283–293. https://doi.org/10.1007/s10681-005-9027-x

    Article  Google Scholar 

  • McMichael BL, Quisenberry JE (1991) Genetic variation for root-shoot relationship among cotton germplasm. Environ Exp Bot 31:461–470

    Article  Google Scholar 

  • McMichael BL, Oosterhuis DM, Zak JC, Beyrouty CA (2010) Growth and development of root systems. In: Stewart JM, Oosterhuis DM, Heitholt J, Mauney JR (eds) Physiology of cotton. Springer, New York, pp 57–71

    Chapter  Google Scholar 

  • Meyer JR, Meyer VG (1961) Origin and inheritance of nectariless cotton. Crop Sci 1:167–169

    Article  Google Scholar 

  • Meyer VG, Meredith WR Jr (1978) New germplasm for crossing upland cotton (Gossypium hirsutum L.) with G. tomentosum. J Hered 69:183–187

    Article  Google Scholar 

  • Moore JH (1956) Cotton Breeding in the Old South. Agric Hist 30(3):96

    Google Scholar 

  • Ogbonnaya CI, Roy-Macauley H, Nwalozie MC, Annerose DJM (1997) Physical and histochemical properties of Kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Ind Crops Prod. https://doi.org/10.1016/S0926-6690(97)00034-4

    Article  Google Scholar 

  • O’Mara JG (1940) Cytogenetic studies on Triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace PF, Cralle HT, El-Halawany SHM, Cothren JT, Senseman SA (1999) Drought-induced changes in shoot and root growth of young cotton plants. J Cotton Sci 3:183–187

    Google Scholar 

  • Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith WC, Cothren JT (eds) Cotton: origin, history, technology, and production. Wiley, New York, pp 33–63

    Google Scholar 

  • Pettigrew WT (2004) Physiological consequences of moisture deficit stress in cotton. Crop Sci 44:1265–1272

    Article  Google Scholar 

  • Pickersgill B, Spencer CHB, Barrett SCH, Andrade-Lima DD (1975) Wild cotton in northeast Brazil. Biotropica 7:42–54

    Article  Google Scholar 

  • Pinto RS, Reynolds MP (2015) Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor Appl Genet 128:575–585. https://doi.org/10.1007/s00122-015-2453-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KR, Bheemanahalli R, Saha S, Singh K, Lokhande SB, Gajanayake B, Read JJ, Jenkins JN, Raska DA, De Santiago LM, Hulse-Kemp AM, Vaughn RN, Stelly DM (2020) High-temperature and drought-resilience traits among interspecific chromosome substitution lines for genetic improvement of upland cotton. Plants 9(12–1747):1–22. https://doi.org/10.3390/plants9121747

    Article  CAS  Google Scholar 

  • Ristova D, Busch W (2014) Natural variation of root traits. Plant Physiol 166:518–527. https://doi.org/10.1104/pp.114.244749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha S, Jenkins JN, McCarty JC, Hayes RW, Stelly DM, Campbell BT (2018) Registration of two CS-B17-derived Upland cotton RILs with improved fiber micronaire. J Plant Reg 12(1):97–100

    Article  Google Scholar 

  • Saha S, Raska DA, Stelly DM (2006) Upland (Gossypium hirsutum) × Hawaiian cotton (G. tomentosum) F1 hybrid hypoaneuploid chromosome substitution series Upland (Gossypium hirsutum L) × Hawaiian cotton (G. tomentosum Nutt. ex Seem.) F1 hybrid hypoaneuploid chromosome substitution series. J Cotton Sci 10:263–272 (ISSN: 1524-3303)

    CAS  Google Scholar 

  • Saha S, Raska DA, Stelly DM, Manchali S, Gutierrez OA (2013a) Hypoaneuploid chromosome substitution F1 hybrids of Gossypium hirsutum L. × G. mustelinum Miers ex Watt. J Cotton Sci 17:102–114

    CAS  Google Scholar 

  • Saha S, Stelly DM, Makamov AK, Ayubov MS, Raska D, Gutierrez OA, Manchali S, Jenkins JN, Deng D, Abdurakhmonov IY (2015) Molecular confirmation of Gossypium hirsutum chromosome substitution lines. Euphytica 205(2):459–473

    Article  CAS  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Campbell BT, Hayes RW, Stelly DM (2017) Tri-species shuffling of chromosomes to study the effects on fiber traits using chromosome substitution lines. Crop Sci 57:1211–1226

    Article  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Stelly DM (2013b) Interspecific chromosomal effects on agronomic traits in Gossypium hirsutum by AD analysis using intermated G. barbadense chromosome substitution lines. Theor Appl Genet 126:109–117. https://doi.org/10.1007/s00122-012-1965-9

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Gutierrez OA, Stelly DM, Percy RG, Raska DA (2004) Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J Cotton Sci 8:162–169 (ISSN: 1439-0523)

    CAS  Google Scholar 

  • Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550

    Article  CAS  PubMed  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong J, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20(4):633–643. https://doi.org/10.1093/molbev/msg065 (PMID:12679546)

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy KR (2018) Assessing morphological characteristics of elite cotton lines from different breeding programmes for low temperature and drought tolerance. J Agron Crop Sci 204(5):467–476. https://doi.org/10.1111/jac.12276

    Article  Google Scholar 

  • Skovsted A (1934) Cytological studies in Cotton. II. Two interspecific hybrids between Asiatic and new world cottons. J Genet 28:407–424

    Article  Google Scholar 

  • Song W, Wang M, Su W, Lu Q, Xiao X, Cai J, Zhang Z, Li S, Li P, Gong J, Gong W, Shang H, Liu A, Li J, Chen T, Ge Q, Shi Y, Yuan Y (2017) Genetic and phenotypic effects of chromosome segments introgressed from Gossypium barbadense into Gossypium hirsutum. PLoS ONE 12(9):1–17 . e0184882. https://doi.org/10.1371/journal.pone.0184882

    Article  CAS  Google Scholar 

  • Stelly D, Saha S, Raska D, Jenkins JN, McCarty J, Gutierrez O (2005) Registration of 17 Upland (Gossypium hirsutum) germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45(6):2663–2665 (ISSN 1435-0653)

    Article  Google Scholar 

  • Todesco M, Owens GL, Bercovich N, Légaré JS, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I, Lande K, Pascual-Robles MA, Nanavati M, Jahani M, Cheung W, Staton SE, Muños S, Nielsen R, Donovan LA, Burke JM, Yeaman S, Rieseberg LH (2020) Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584(7822):602–607

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:3–14. https://doi.org/10.2135/cropsci2006.07.0489tpg

    Article  CAS  Google Scholar 

  • Van Esbroeck GA, Bowman DT, May OL, Calhoun DS (1999) Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci 39:323–328

    Article  Google Scholar 

  • Wehrhahn C, R.W. Allard RW, (1965) Detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wilson RF, Burke JJ, Quisenberry JE (1987) Plant morphological and biochemical responses to field water deficits. II. Responses of leaf glycerolipid composition in cotton. Plant Physiol 84:251–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Q, Fernando KMC, Mayes S, Sparkes DL (2017) Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot 119:1115–1129. https://doi.org/10.1093/aob/mcx001

    Article  PubMed  PubMed Central  Google Scholar 

  • Yik CP, Birchfield W (1984) Resistant germplasm in Gossypium species and related plants to Rotylenchulus reniformis. J Nematol 16:146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yu J, Pei W, Li X, Said J, Song M, Sanogo S (2015) Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Genom 16:577. https://doi.org/10.1186/s12864-015-1682-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. David Brand of Mississippi State University and Ms. Evita Lopez-Gourley, at USDA-ARS for technical assistance and lab analysis, and Mr. Wayne A. Raska for decades of diligence in developing monosomic stocks and chromosome substitution lines. Development of the chromosome substitution lines used in this study was made possible by partial funding support from Cotton Incorporated, including agreement no. 16-349, as well as the Texas State Support Committee, Texas Food & Fiber Commission and the USDA-ARS and from the grant of USDA/ARS CRIS project 6064-21000-016.

Funding

All authors agreed with the content and that all gave explicit consent to submit and that they obtained consent from the responsible authorities at the institute/organization where the work has been carried out, before the work is submitted. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. A submission to the journal implies that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality. This article does not contain any studies involving animal or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sukumar Saha or David M. Stelly.

Ethics declarations

Conflicts of interests

All procedures performed in this research were in accordance with the ethical standards of the Committee on Publication Ethics (COPE) as per the policy of the journal. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayubov, M.S., Norov, T.M., Saha, S. et al. Alteration of root and shoot morphologies by interspecific replacement of individual Upland cotton chromosome or chromosome segment pairs. Euphytica 217, 154 (2021). https://doi.org/10.1007/s10681-021-02771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02771-6

Keywords

Navigation