Skip to main content
Log in

Morphobiological Response of Different Genotypes of Pinus sylvestris to the Influence of Iron and Copper Nanoparticles

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The article presents the results of studying the effect of Cu and Fe nanoparticles on the development of Scots pine seedlings of two genotypically different populations growing in different geobotanical, soil-geological conditions in Orenburg oblast. It was found that the morphobiological reaction of seedlings to the effect of Cu and Fe nanoparticles, regardless of the origin of the seed material, is unidirectional in seedlings obtained from pines adapted to an increased natural geochemical background for Cu and Fe (population of the Kvarkensky district), and in seedlings obtained from seeds collected from pine trees growing in a lower geochemical background conditions (population of Buzuluk region). The presence of Cu nanoparticles had a toxic effect on the growth of pine seedlings while Fe had a stimulating one. However, the morphometric parameters of the seedlings obtained from the seeds collected in the population of the Kvarkensky district significantly differed from the seedlings of the Buzuluk district. In the presence of Cu nanoparticles in the medium, the first group of seedlings exceeded the second in main root length by 2.1–4.9%; in the number of adventitious roots, by up to 10.2%; and in the length of adventitious roots, by 0.84–7.61%. In the presence of Fe nanoforms in the medium, the first group of seedlings also exceeded the second in main root length by 0.39–2.23%; in the number of adventitious roots, by up to 3.1%; and in the length of adventitious roots, by 0.55–1.04%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. V. Pavlov, R. V. Zhelankin, I. P. Arsent’eva, et al., Konstr. Kompoz. Mater., No. 3, 20 (2007).

  2. A. I. Shigapova and Z. Kh. Shigapov, Vestn. Orenb. Univ., No. 6, 445 (2009).

  3. A. M. Korotkova, S. V. Lebedev, F. G. Kayumov, et al., Sel’skokhoz. Biol. 52, 172 (2017).

    Google Scholar 

  4. A. M. Korotkova and S. V. Lebedev, in Prospects for Science-2015, Proceedings of the 1st Correspondence Competition of Research Papers, Ed. by A. V. Gumerov (Znanie, Kazan’, 2015), p. 132.

  5. M. N. Prasad, Fiziol. Rasten. 50, 768 (2003).

    Google Scholar 

  6. E. A. Kalashnikova, Vestn. MGUL, Lesn. Vestn., No. 7, 65 (2012).

  7. T. V. Varduni, O. A. Kapralova, P. A. Dmitriev, et al., Khron. Ob’’ed. Fonda El. Resur. Nauka Obrazov., No. 8 (99), 31 (2017).

  8. D. V. Vinogradov and L. V. Potapova, Mezhdun. Tekh.-Ekon. Zh., No. 3, 37 (2009).

  9. I. D. Grodnitskaya, Khvoin. Boreal. Zony, No. 1, 137 (2006).

    Google Scholar 

  10. G. F. Nekrasova, O. S. Ushakova, A. E. Ermakov, M. A. Uimin, and I. V. Byzov, Russ. J. Ecol. 42, 458 (2011).

    Article  CAS  Google Scholar 

  11. G. N. Fad’kin, in Anniversary Collection of Works of Students, Graduate Students, and Teachers of Agroecological Faculty, Dedicated to the 110th Anniversary of the Birth of I.S. Travin (2010), p. 158.

    Google Scholar 

  12. V. F. Fedorenko, D. S. Buklagin, I. G. Golubev, and L. A. Nemenushchaya, Nanotechnol. Russ. 10, 318 (2015).

    Article  CAS  Google Scholar 

  13. N. G. Fedorets, O. N. Bakhmet, A. N. Solodovnikov, et al., Soils of Karelia: Geochemicalatlas (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  14. R. R. Brooks, Plants that Hyperaccumulate Heavy Metals (SAB Int., Wallingford, 1998).

    Google Scholar 

  15. X. E. Yang, X. X. Long, H. B. Ye, et al., Plant Soil 259, 181 (2004).

    Article  CAS  Google Scholar 

  16. L. A. Panichnin and A. P. Raikova, Izv. TSKhA, No. 1, 59 (2009).

    Google Scholar 

  17. G. I. Churilov and M. M. Sushilina, in Ecological State of the Natural Environment and Scientific and Practical Aspects of Modern Reclamation Technologies, Collection of Articles (VNIIGiM, Ryazan’, 2008), No. 3, p. 84.

  18. M. V. Rjabuchina, R. G. Kalyakina, and N. Friesen, Turczaninowia 23, 116 (2020). https://doi.org/10.14258/turczaninowia.23.1.12

    Article  Google Scholar 

  19. Z. N. Ryabinina and M. S. Knyazev, Keys to Vascular Plants of the Orenburg Region (KMK, Moscow, 2009) [in Russian].

    Google Scholar 

  20. A. A. Chibilev, in Steppes of Northern Eurasia, Proceedings of the 7th International Symposium (Dimur, Orenburg, 2015), p. 916.

  21. A. I. Kliment’ev, Vopr. Stepeved., No. 4, 83 (2005).

  22. Methodical Instructions No. 1.2.2635-10, Biomedical safety assessment of nanomaterials (2010).

  23. GOST (State Standard) No. 15150, Machines, devices, and other technical products. Versions for different climatic regions. Categories, operating conditions, storage, and transportation in terms of the impact of climatic environmental factors.

  24. L. V. Galaktionova and I. Z. Gubaidullina, Izv. Orenb. Ggrar. Univ., No. 3 (65), 196 (2017).

  25. N. P. Bityutskii, Essential Plant Trace Elements (DEAN, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  26. A. D. Prudnikov and A. G. Prudnikova, in Proceedings of the International Conference on Scientific Support for the Innovative Development of the Agro-Industrial Complex of the Regions of the Russian Federation (Kurgan State Agricultural Academy), 2018, p. 612.

  27. A. P. Raikova, L. A. Panichkin, and N. N. Raikova, in Nanotechnology and Information Technologies—Technologies of the XXI Century, Proceedings of the International Conference, 2006, p. 69.

  28. V. S. Tsitsuashvili, T. M. Minkina, D. G. Nevidomskaya, et al., Vestn. Agrar. Nauki Dona 3 (39), 93 (2017).

    Google Scholar 

  29. V. N. Belava, O. O. Panyuta, G. M. Yakovleva, et al., Nanoscale Res. Lett. 12, 250 (2017).

    Article  CAS  Google Scholar 

  30. T. Cyrusová, Š. Petrová, T. Vaněk, et al., Water Air Soil Pollut., 228 (2017).

  31. M. V. J. da Costa and P. K. Sharma, Photosynthetica 54, 110 (2016).

    Article  CAS  Google Scholar 

  32. M. J. Din, F. Ashad, Z. Hussain, et al., Nanoscale Res. Lett. 12, 638 (2017).

    Article  Google Scholar 

  33. R. C. Kasana, N. R. Panwar, R. K. Kaul, et al., Environ. Chem. Lett. 15, 233 (2017).

    Article  CAS  Google Scholar 

  34. G. F. Nekrasova, O. S. Ushakova, A. E. Ermakov, et al., Russ. J. Ecol. 42, 458 (2011).

    Article  CAS  Google Scholar 

  35. V. D. Rajput, T. Minkina, S. Suskova, et al., BioNanoSci 8, 36 (2018).

    Article  Google Scholar 

  36. Z. N. Ryabinina, M. V. Ryabukhina, and M. V. Kolodina, Nano Hybrids 13, 156 (2017).

    Article  Google Scholar 

  37. N. Taran, V. Storozhenko, N. Svietlova, et al., Nanoscale Res. Lett. 12, 60 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Kalyakina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakina, R.G., Ryabinina, Z.N. & Rjabuchina, M.V. Morphobiological Response of Different Genotypes of Pinus sylvestris to the Influence of Iron and Copper Nanoparticles. Nanotechnol Russia 16, 110–114 (2021). https://doi.org/10.1134/S2635167621010055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621010055

Navigation