Skip to main content
Log in

Ti–TiC Composites by Thermal Explosion in Mechanically Activated Ti–xC Powder Blends (x = 1.0–6.3 wt %)

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Warmup of mechanically activated Ti–xC powder mixtures (x = 1.0, 2.1, 4.2, and 6.3 wt %) in a furnace preheated to 800°C was found to result in thermal explosion (volume reaction) in mixtures with x = 4.2 and 6.3 wt %. Activated powder mixtures and combustion products were characterized by XRD, optical metallography, and SEM/EDX. Combustion products represented metal-matrix Ti–TiC composites containing different amounts of strengthening agent. Our results may turn interesting to those engaged in deposition (cladding) of protective Ti–TiC coatings using reactive Ti–C mechanocomposites as a starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Liu, Y., Chen, L.F., Tang, H.P., Liu, C.T., Lui, B., and Hung, B.Y., Design of powder metallurgy titanium alloys and composites, Mater. Sci. Eng., A, 2006, vol. 418, nos. 1–2, pp. 25–35. https://doi.org/10.1016/j.msea.2005.10.057

    Article  CAS  Google Scholar 

  2. Luo, S.D., Li, Q., Tian, J., Wang, C., Jan, M., Schaffer, G.B., and Qian M., Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties, Scr. Mater., 2013, vol. 69, no. 1, pp. 29–32. https://doi.org/10.1016/j.scriptamat.2013.03.017

    Article  CAS  Google Scholar 

  3. Kondoh, K., Threrujirapapong, T., Imai, H., Umeda, J., and Fugetsu, B., CNTs/TiC reinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties, J. Nanomater., 2009, vol. 2008, 127538. https://doi.org/10.1155/2008/127538

    Article  Google Scholar 

  4. Li, S., Sun, B., Imai, H., and Kondoh, K., Powder metallurgy Ti–TiC metal matrix composites prepared by in situ reactive processing of Ti–VGGFs system, Carbon, 2013, vol. 61, pp. 216–228. https://doi.org/10.1016/j.carbon.2013.04.088

    Article  CAS  Google Scholar 

  5. Delbari, S.A., Namini, A.S., and Asl, M.S., Hybrid Ti matrix composites with TiB2 and TiC compounds, Mater. Today Commun., 2019, vol. 20, 100576. https://doi.org/10.1016/j.mtcomm.2019.100576

    Article  CAS  Google Scholar 

  6. Farías, I., Olmos, L., Jiménez, O., Flores, M., Braem, A., and Vleugels, J., Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering, Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 1653−1664. https://doi.org/10.1016/S1003-6326(19)65072-7

    Article  Google Scholar 

  7. Liu, W. and DuPont, J.N., Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping, Scr. Mater., 2003, vol. 48, no. 9, pp. 1337–1342. https://doi.org/10.1016/S1359-6462(03)00020-4

    Article  CAS  Google Scholar 

  8. Janaki Ram, G.D., Yang, Y., and Stucker, B.E., Deposition of Ti/TiC composite coatings on implant structures using laser engineered net shaping, Proc. Int. Solid Freeform Fabrication Symposium – An additive Manufacturing Conf., Austin, Texas, USA, 2007, pp. 527–539. https://doi.org/10.26153/tsw/7239.

  9. Gu, D., Meng, G., Li, C., Meiners, W., and Poprawe, R., Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement, Scr. Mater., 2012, vol. 67, no. 2, pp. 185–188. https://doi.org/10.1016/j.scriptamat.2012.04.013

    Article  CAS  Google Scholar 

  10. Lenivtseva, O., Golovin, E., Samoylenko, V., Mil, D., and Golovin, D., Structure and properties of surface layers obtained by atmospheric electron beam cladding of graphite–titanium powder mixture onto titanium substrate, Adv. Mater. Res., 2014, vol. 1040, pp. 784–789. https://doi.org/10.4028/www.scientific.net/AMR.1040.784

    Article  CAS  Google Scholar 

  11. Krinitcyn, M., Pribytkov, G., Korzhova, V., and Firsina, I., Structure and properties of composite coatings prepared by electron beam melting with “titanium carbide–titanium binder”, Surf. Coat. Technol., 2019, vol. 358, pp. 706–714. https://doi.org/10.1016/j.surfcoat.2018.12.001

    Article  CAS  Google Scholar 

  12. Wanjara, P., Drew, R.A.L., Root, J., and Yue, S., Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites, Acta Mater., 2000, vol. 48, pp. 1443–1450. https://doi.org/10.1016/S1359-6454(99)00453-X

    Article  CAS  Google Scholar 

  13. Pribytkov, G.A., Krinitcyn, M.G., Korzhova, V.V., Firsina, I.A., Baranovskiy, A.V., and Durakov, V.G., Formation of the structure via electron beam cladding of coatings by titanium carbide–titanium binder powders, Inorg. Mater. Appl. Res., 2019, vol. 10, no. 3, pp. 582–588. https://doi.org/10.1134/S2075113319030353

    Article  Google Scholar 

  14. Dudina, D.V., Pribytkov, G.A., Krinitcyn, M.G., Korchagin, M.A., Bulina, N.V., Bokhonov, B.B., Batraev, I.S., Rybin, D.K., and Ulianitsky, V.Yu., Detonation spraying behavior of TiCx–Ti powders and the role of reactive processes in the coating formation, Ceram. Int., 2016, vol. 42, pp. 690–696. https://doi.org/10.1016/j.ceramint.2015.08.166

    Article  CAS  Google Scholar 

  15. Korchagin, M.A., Thermal explosion in mechanically activated low-calorific-value compositions, Combust., Explos. Shock Waves, 2015, vol. 51, no. 5, pp. 578–586. https://doi.org/10.1134/S0010508215050093

    Article  Google Scholar 

  16. Bukrina, N.V. and Baranovskiy, A.V., Synthesis of composites made of powder mixtures (Ti, C, and Al) in controlled heating, J. Appl. Mech. Tech. Phys., 2019, vol. 60, no. 4, pp. 732–739. https://doi.org/10.1134/S0021894419040187

    Article  CAS  Google Scholar 

  17. Alekhin, O.C., Korolev, D.V., Suvorov, A.K., and Suvorov, K.A., Raschet adiabaticheskoi temperaturi goreniya entalpiinym metodom: Metodicheskie ukazaniya (Calculation of Adiabatic Combustion Temperature by Enthalpy Method: Guidelines), St. Petersburg: Izd. Gos. Tekhnol. Inst., 2001.

  18. Binnewies, M. and Milke, E., Thermochemical Data of Elements and Compounds, Weinheim: Wiley–VCH, 1999.

    Google Scholar 

  19. Eibler, R., Electronic structure and energetics of ordered titanium carbides of composition Ti2C, J. Phys.: Condens. Matter, 2002, vol. 14, no. 17, 4425. https://doi.org/10.1088/0953-8984/14/17/315

    Article  CAS  Google Scholar 

  20. Song, M.S., Huang, B., Zhang, M.X., and Li, J.G., Study of formation behavior of TiC ceramic obtained by self-propagating high-temperature synthesis from Al–Ti–C elemental powders, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 3, pp. 584–589. https://doi.org/10.1016/j.ijrmhm.2008.09.009

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Russian Science Foundation (project no. 17-19-01425-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Pribytkov or M. G. Krinitcyn.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pribytkov, G.A., Baranovskiy, A.V., Firsina, I.A. et al. Ti–TiC Composites by Thermal Explosion in Mechanically Activated Ti–xC Powder Blends (x = 1.0–6.3 wt %). Int. J Self-Propag. High-Temp. Synth. 30, 87–93 (2021). https://doi.org/10.3103/S1061386221020102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221020102

Keywords:

Navigation